

General Catalogue

General Catalogue

No. A2007E, November 2007.

Printed in Romania on environmental friendly recycled paper.

Reproduction of this catalogue without written concent is strictly prohibited.

Foreward

This General Catalogue is a very thorough and detailed bearing catalogue. This Catalogue contains almost all the standard rolling bearings required for industrial, automotive and agricultural applications for industrial product manufacturers as well as for replacement purposes. In addition for special applications which includes non standard bearings requirements have also been included extensively according to their sizes and constructive dimensions.

The Technical section of this catalogue includes general technical data available for all types of bearings with regard to selection of bearing type, size, tolerances, frictional movement, lubrication, life rating and other technical information's essential for bearing designing and its applications.

This catalogue is useful for all designers and experts in machines, equipments, bearings mounting and dismounting, operations and maintenance. Incase these bearings do not meet user requirements and needs of rolling bearings, our qualified technicians and engineers will be at your service to help provide a suitable solution for your needs.

The Technical section is followed by bearing tables. These bearing tables are classified as per bearing construction types and listed in according to their bore diameter. Brief technical description introduces these bearing tables which are useful for bearing selection. Basic dynamic and static loads have been calculated as per ISO calculation guidelines. Axial and Radial Clearance are also up to date. All sections are arranged in an order which is usually followed by design engineers.

This catalogue is one of the advantages which we provide to our customers. In addition there are several benefits and values such as simplified bearings selection, short lead times, availability, engineering knowledge and expertise and many other values which will help in making us the supplier of choice.

We are confident that you will find this catalogue useful in the selection, use and maintainence of rolling bearings. We thank you for your support and look forward to continuously serving and updating you for all your future requirements.

Designations (Figures)

10,12,13,22,23 32,33,33D 34,35,36 42,43 52,53 60,62,63,64 70A,70C,72A,72C 70A,70C(D..,T..,Q..)

72B,73B(D..,T..,Q..) 73Q,75Q,76Q 74,75,76,75Z,76Z,77Z

112,113 160,161

72B.73B

302,303,313,320,322,323,329 302R,303R,322R,323R

340,342,343,345,349 340R,341R,342R,343R

350...359

360,361,362...369 3NN51

618,619,622,629 650(Z)...683(Z) 708,709 718,719,728 940...943 951,952,951Z

2344,2347 4901...4921.4xNA49

4904

4901..4923,7047..7049,

8041..8048 7902.7906 Self-aligning ball bearings

Angular contact ball bearings, double row Angular contact ball bearings, double row Deep groove ball bearings, double row Angular contact ball bearings, double row Deep groove ball bearings, single row

High precision angular contact ball bearings, single row

High precision angular contact ball bearings, paired and stack mounted

Angular contact ball bearings, single row

Angular contact ball bearings, paired and stack mounted Three point contact ball bearings, non-standardized Angular contact ball bearings, non-standardized Self-aligning ball bearings with extended inner ring

Deep groove ball bearings, single row

Tapered roller bearings

Tapered roller bearings, with flanged outer ring

Tapered roller bearings

Tapered roller bearings with flanged outer ring

Tapered roller bearings, double row Tapered roller bearings, four row

Support rollers

Deep groove ball bearings, single row

Deep groove ball bearings, single row, non-standardized

Angular contact ball bearings
Angular contact ball bearings
Drawn cup needle roller bearings
Tapered roller thrust bearings

Angular contact thrust ball bearings, double direction

Needle roller bearings

Needle roller bearings without inner ring

Bearings for cardan drives

Angular contact ball baerings, double row

Designations (Letters)

AH3,AH23,AH30,AH31,

Withdrawal sleeves

AH32,AH240,AH241 ANK

Needle roller and cage thrust assemblies

AS BL62.BL63 Thrust washers for needle roller and cage thrust assemblies Deep groove ball bearings, single row for increased load

BM

Special sleeves

BO

Magneto type bearings

BR

Steel balls

BS,BT

Special sleeves Drawn cup needle roller bearings

CaV,CNA10V,CNA16V CT2.CT5.CT6

Bearing housings

E .

Magneto type bearings

F40...F110

Bearing housings

H2,H3,H22,H23,H30, H31,H32

Adapter sleeves

HJ2,HJ3,HJ4,HJ10,HJ22,HJ23

Angle rings for bearings

HM,HML,HM30,HM31

Lock nuts, extraction nuts

K75,K76

Needle roller and cage asemblies

Angular contact ball bearings, single row (ball cages)

K811...K893

Needle roller and cage thrust assemblies

KB

Ball and cage assemblies for bicycles

KBK,KBZ

Needle roller and cage assemblies for conecting rod applications

KK

Needle roller and cage assemblies, double row

KRV

Cam followers Lock nuts

KM

Magneto type bearings

LP.

Pressure cylinder bearings for textile machines

LS

Raceways washers for needle roller and cage thrust assemblies

М

Magneto type bearings

MB,MBL,MS30,MS31 NA,NA48,NA49,NA69 Locking washers and clamps Needle roller bearings

NAV,NA40V,NA49V

Needle roller bearings without cage

NAO,NA49B,NA69A

Needle roller bearings Support roller

NUTR OF40..OF110

Bearing housings
Water pump bearings

P16,P20 P40...P85 PFL40...PFL100

Pressed sheet bearing housings Pressed sheet bearing housings

PFD40...PFD100

PFT40...PFT100

QJ2,QJ3

Four point contact ball bearings

R340...R343

Tapered roller bearings without inner ring

RA

Needle rollers

RBNA,RFNA RHNA.RHNAV Drawn cup needle roller bearings
Drawn cup needle roller bearings

RNA,RNAO,RNA49,RNA69 RNA19,RNA72,RNAO,RNAV

Needle roller bearings, without inner ring Needle roller bearings, without inner ring Deep groove ball bearings for textile machines

RUWL

Lower pressure cylinder bearings for spinning machines

\$40...\$110 Bearing housings

Ry65

RT

Angular contact thrust ball baerings, single direction

T-75, T-76, T-78

T-302,T-320,T-322,T-329 T-340,T-341 T-340...T-345 T-350,T-351,T-359 T-353,T354,T-355

T-353...T-355 T-353BJ

T-360...T-369 T-360...T-364 T-951,T-952 UC2,UC5,UCC2 UD2,US2,USC2

UE2,UEC2 UWL VE.10

VE.10 VI.10 VU.10 VU.10

VIE.10 VE.20 VU.20 Angular contact thrust ball bearings, single row

Tapered roller bearings, single row Tapered roller bearings, single row Tapered roller bearings, single row Tapered roller bearings, double row Tapered roller bearings, double row Tapered roller bearings, double row

Rolling mills bearings

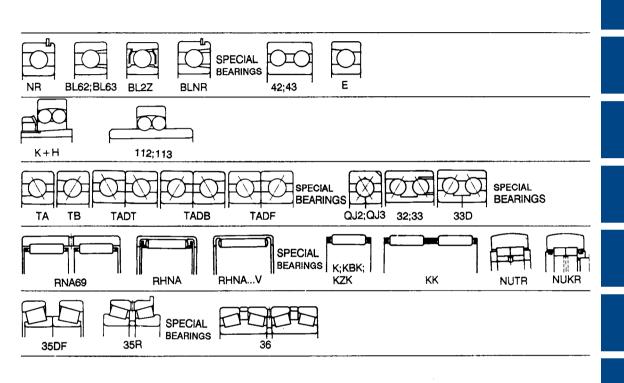
Tapered roller bearings, four row Tapered roller bearings, four row Tapered roller thrust bearings

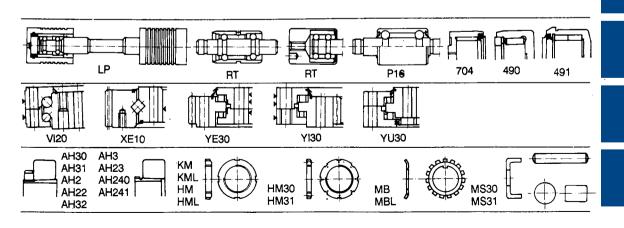
Deep groove ball bearings with extended inner ring Deep groove ball bearings with extended inner ring Deep groove ball bearings with extended inner ring Lower pressure cylinder bearings for spinning machines

Slewing bearings, single row, with external gear Slewing bearings, single row, with external gear Slewing bearings, single row, with internal gear Slewing bearings, single row, without gear Slewing bearings, single row, without gear

Slewing bearings, single row, with internal and external gear

Slewing bearings, double row, with external gear Slewing bearings, double row, without gear





Technical Section	
Deep groove ball bearings single row double row magneto type	618 619 62 160 63 60 64 2ZR 2RSR 2Z 2RS
Self-aligning ball bearings	12 22
Angular contact ball bearings single row double row	72B 70A 73B 72C 70C 72A B DT DB DF
Needle roller bearings drawn cups needle roller and cage assemblies support rollers cam followers	48 49 40 NA NA69 RNA
Tapered roller bearings single row double row four row	329 303 320 313 302 323 322 R SPECIAL BEARINGS 35DB
Spherical thrust roller bearings	29
Bearings for various applications deep groove ball bearings textile machines water pump cardan drives	UC UE UWL
Slewing bearings	VE10 VI10 VU10
Bearings housings Accesories Adapter and withdrawal sleeves Rolling elements	H2 H30 H22 H31 H3 H32 H23

Contents

1.	SELECTION OF BEARING TYPE Selection of bearing type considering the magnitude and direction of load Selection of bearing type considering the alignment between shaft and housing Selection of bearing type considering the operating temperature Selection of bearing internal clearance Bearing types and technical characteristics Selection of bearing type Performance comparison of bearing type	12 12 12 13 13 13 14
2.	SELECTION OF BEARING DIMENSION Basic load ratings Bearing life Bearing rating life Dynamic load and variable speed Basic dynamic load of a bearing group Adjusted rating life Static load	18 18 18 18 23 26 26
3.	BEARING FRICTION	30
4.	LIMITING SPEED	33
5.	BEARING TOLERANCES Radial bearings (excepting tapered roller bearings) Tapered roller bearings Tapered bore bearings Mounting chamfer dimensions tolerances	37 39 46 51 52
6.	BEARING MATERIALS Chrome-alloy bearing steels Case-hardening steels Heat treatment steels Bearing cages	54 54 54 55 55
7.	BEARING APPLICATIONS Locating bearing and non-locating bearing Recommendation for bearing fits selection Deviations of form and position Bearing axial location Bearing sealing	56 56 57 75 77
8.	BEARING LUBRICATION Grease lubrication Oil lubrication	81 81 85
9.	BEARING DESIGNATION	89
10.	EXAMPLES OF BEARING CALCULATION	91
11.	BEARING MOUNTING Mounting of bearings with cylindrical bore Mounting of bearing with tapered bore Bearings dismounting	102 102 104 105

Deep groove ball bearing	108
Self-aligning ball bearings	148
Angular contact ball bearings	164
Needle roller bearings	214
Taperad roller bearings	250
Crossed tapered roller bearings	300
Spherical thrust roller bearings	308
Bearing for various applications	315
 Deep groove ball bearings with spherical outer ring and extended inner ring 	316
- Bearings for textile machines	326
- Water pumps bearings	338
- Bearings for cardan drives	342
Slewing bearings	348
Bearing housing units	392
Accessories	406
Rolling elements	418

Measuring units of the international system SI

Length

1 mm = 0.039 in1 in = 25.4 mm

Weight

1 kg = 2,205 lb1 lb = 0,454 kg

Force

1 kN = 1 000 N = 225 lbf 1 kgf = 9,81 N 1 lbf = 4,45 N

Moment

1 N mm = 0,102 kgf mm 1 kgf mm = 9,81 N mm 1 N m = 8,85 in lbf 1 in lbf = 0,113 N mm

Pressure per unit of area (surface)

1N/mm² = 1MPa = 145 psi 1 psi = 0,102 kgf/mm² 1kgf/mm² = 9,81 N/mm²

Power

1~W = 1~J/s = 1~N~m/s = 0,102~kgf~m/s 1~kW = 1,36~CP = 102~kgf~m/s 1~kgf~m/s = 9,81~N~m/s = 9,81~j/s

Mechanical work

1 kgf m = 9.81 W s = 9.81 N m1 J (Joule) = 1 N m = 1 W s = 0.102 kgf m

Kinematic viscosity

1 mm²/s = 1 cSt (centiStokes)

1. Selection of bearing type

Each type of bearing displays characteristic features which make it suitable for a certain application. Therefore, many bearing types and constructive versions have been developed so that they can satisfy various demands for rolling bearing. Taking into account the great number of factors to be considered when selecting a bearing type, no general rule can be given.

We give further the most important criteria to be considered when selecting the bearing type.

Selection of bearing type, considering the load magnitude and direction

Radial load

Deep groove ball bearings are the most suitable types of bearings for light and moderate pure radial loads. For heavy radial load and where large-diameter shafts are used, double row cylindrical roller bearings are the adequate choice. Needle roller bearings are recommended in case of limited space and heavy loads.

Axial load

For pure axial loads, single direction thrust ball bearings are used in case of loads acting in one direction. For loads acting in both directions, double direction thrust ball bearings are used. Angular contact thrust ball bearings and single or double row angular contact ball bearings are used in case of light or moderate pure axial loads at moderate speeds.

For light axial loads at high speeds, deep groove ball bearings are suitable. Under the axial load, a contact angle different from 0° is generated in these bearings and therefore they operate as angular contact ball bearings. In order to increase axial load carrying capacity, a larger clearance should be selected (C3, C4,etc.)

For moderate axial loads at high speeds, angular contact ball bearings in tandem arrangement are used so that they can take over loads acting in both directions. Four-point contact ball bearings, QJ type, are also used.

Combined load

In order to carry combined radial and axial loads acting simultaneously, bearings with a contact angle different from 0° are used. The greater the contact angle, the greater the axial load carrying capacity.

Bearings which accommodate only one direction axial loads should always be mounted in pairs so that they can carry axial loads in both directions.

Selection of bearing type considering the alignment between shaft and housing

Angular misalignments occur generally when the shaft bends under the operating load or when bearings adjoint parts have form or position deviations.

In such cases, self-aligning ball bearings, cylindrical roller bearings or spherical roller thrust bearings should be used.

A certain bearing bent angle can compensate for errors of alignment and maximum angle values are shown for each type in the introductory texts of the table sections.

When misalignments should be compensated, radial and axial clearance are important. The larger the clearance, the greater the possibility of self-aligning.

If the misalignment exceeds the permissible values shown in the introductory texts of the bearing tables, the bearing rating life decreases. The greater the ratio F_r/C_{0r} , the shorter the rating life. If $0.1 < F_{0r}/C_{0r} < 3$, the rating life decreases with about 25%.

Selection of bearing type considering the operating temperature

Bearings are generally used up to a temperature of maximum +120°C. In case of higher temperatures, bearings with special heat treatments should be used, in accordance with specifications on page 27.

Sealed bearings, 2RS type, should be used at operating temperatures up to +80°C. If this temperature is exceeded, the efficacy of lubricants is considerably reduced.

Selection of bearing internal clearance

In most cases, while operating, bearings should have a small radial clearance that can be defined as "the possible value of displacement in radial direction of one bearing ring in relation to the other without parts deformations"

While operating, bearing internal clearance is different from the one at delivery, since the latter is reduced when mounting bearings with a certain tight fit.

Under operating conditions, internal clearance change is also caused by different temperatures between the outer and inner ring. Bearings are generally delivered with a normal radial or axial clearance according to the values shown for each rolling bearing group.

The decrease in radial clearance due to the tight fit and operating temperature is considered to be between 60-80% of the tightening value, depending on bearing series and size.

After the clearance in bearings has been decreased, a large enough operational clearance should remain, so that the lubricant film shouldn't be destroyed.

Deep groove ball bearings should have an operational clearance close to zero. There may be often a light preload, due to the point-contact between the rolling elements and raceways.

Small-sized cylindrical roller and needle roller bearings should have an operational clearance of 5-10 μ m and larger-sized bearings a clearance of 10-30 μ m.

Bearing producers can also manufacture - at requestbearings with radial and axial clearance smaller (C1 and C2) or larger (C3, C4 and C5) than normal, so that the most favorable operating conditions for bearings should be assured.

Cylindrical and needle roller bearings can be manufactured with interchangeable rings (no special designation) and with non interchangeable rings (suffix NA).

Bearings with non interchangeable parts have a smaller radial clearance than bearings with interchangeable parts. Changing rings from one bearing to another is not allowed.

In case of bearings with interchangeable parts, the rings may be changed and the values of radial clearance will be not altered.

Bearing types and technical characteristics

Bearing producers can manufacture bearings of various types and sizes so that they can meet the customers' requirements assuring a proper reliability for various applications.

Table 1.1 shows qualitative results of each group of bearings, considering the main technical characteristics.

Bearing type is selected depending on the technical characteristics required by a certain application.

A suggestive graphic symbol has been determined for each main technical characteristic. Thus, a proper bearing for each purpose can be easily chosen. According to the specifications in this catalogue, the proper type and size of bearing can be selected, together with all manufacturing and operating technical conditions.

Selection of bearing type

- excellent - good - fair	- poor - unsuitable - single direction - double direction	Purely radial load	Purely axial load	Combined load
Deep groove ball bearing: - single row			\mathbb{Q}	
- double row			10	
Self-aligning ball bearings		0	0	0
Angular contact ball bearings	a O b	0	a D b	0
High precision angular contact ball bearings	a O b	0	а	0
Four-point contact ball bearings		0	\bigcirc	0
Angular contact ball bearings double row		0	©;	0
Needle roller bearings NA		0	0	0
Drawn cup needle roller bearings RHNA		0	0	0
Needle roller and cage assemblies K, KK		0	0	0

Performance comparison of bearing type

Table 1.1

									Table	1.1
Moment load	Tolerance class	Quiet running	High speed	High stiffness	Compensation of misalignement	Low friction	Shock resistence	Located bearing	Non - located bearing	Axial displacement possible in bearing
					0					0
					0				0	0
0	0						0			0
			0		0				0	0
					0				0	0
					0					\bigcirc
					0					0
0	0	0	0	0	0			0		
0		0	0	0	0			0		
0			0	0	0			0		

- excellent - good - fair	- poor - unsuitable - single direction - double direction	Purely radial load	Purely axial load	Combined load
Support rollers, cam followers				
Taper roller bearings: - single row			<u>Q</u>	
- double row	用用		<u>Q</u>	
- four row		0	\bigcirc	0
Needle roller thrust bearings	Ш	0	Q	0
Crossed tapered roller bearings		0	<u>Q</u>	0
Spherical roller thrust bearings	A	0	<u>Q</u>	0
Deep groove ball bearings with spherical outer surface and extended inner ring			\bigcirc	0
Slewing bearings		0	Q	0

Moment load	Tolerance class	Quiet running	High speed	High stiffness	Compensation of misalignement	Low friction	Shock resistence	Locating bearing	Non - locating bearing	Axial displacement possible in bearing
0	0	0	0	0	0	0	0	0	0	0
0						0	0		0	0
0		0	0	0	0	0	0	0	0	0
0	0	0			0	0	0		0	0
0	0	0			0	0	0	0	0	0
0	0	0		0	0	0	0	0	0	0
0	0			0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

2. Selection of bearing dimension

The size of a bearing is selected considering the load in the used rolling bearing and also depends on the operational rating life and prescribed operating safety.

Basic load ratings

The basic dynamic load rating $C_{\rm r}$ is used to calculate bearing dimensions while rotating under load. It expresses the bearing admissible load which will give a basic rating life up to 1000 000 revolutions.

The basic dynamic load ratings of bearings have been determined in accordance with national standard and with the methods prescribed by ISO 281. The values are given in bearing tables.

Considering the basic dynamic load rating, is calculated the service time until the fatigue of the material appears, determining this way the calculated rating life.

Basic static load rating $C_{\rm or}$ is considered in case of low speeds, low oscillating movements or in the stationary case.

The basic static load rating is defined in accordance with ISO 76 and national standard, as the load acting upon the stationary bearing. It corresponds to a calculated contact stress in the center of the contact area between the most heavily loaded rolling element and the raceway, of:

- 4 600 MPa for self-aligning ball bearings,
- 4 200 MPa for all other ball bearings,
- 4 000 MPa for all roller bearings.

This stress produces a permanent deformation of the rolling element and raceway which is about 0,0001 of the rolling element diameter. The loads are pure radial for radial bearings and pure axial for thrust bearings.

Bearing life

The life of a rolling bearing is defined as the number of revolutions or the number of operating hours, which the bearing is capable to endure, before the first sign of fatigue occurs on one of its rings, on the raceway or the rolling elements.

If we want to consider only the fatigue on the bearing operating surfaces, the following conditions have to be observed:

- The forces and speeds considered when calculating the bearing should correspond to the real operating conditions
- 2. Proper lubrication should be assured during the entire operating period.
- 3. If the bearing carries a light load, its failure is generated by the wear.
- 4. Experience showed that the failure of many bearings was caused by other reasons than fatigue, such as: selection of an inadequate bearing type in a bearing joint, improper operation or lubrication, outer particles in bearing

Basic rating life

The basic rating life of a single bearing or of a group of apparently identical bearings operating under identical conditions, is the life corresponding to a reliability of 90%.

The average life of a group of bearings is approximately five times longer than the basic rating life.

Basic rating life is marked with L_{10} (millions of revolutions) or L_{10h} (operating hours).

L₁₀ can be calculated using the equation:

$$L_{10} = \left(\frac{C}{P}\right)^{P}$$
, where:

l basi

basic rating life, millions of revolutions,

basic bearing load, kN,

equivalent dynamic bearing load, kN,

exponent of the life equation with the following values:

p = 3 - for ball bearings

p = 10/3 - for roller bearings

The equivalent dynamic bearing load, respectively the radial and axial load, acting simultaneously can be calculated using the following equations (applicable to ball and roller radial bearings):

$$P_r = F_r$$
, kN, - for pure radial load $P_r = XF_r + YF_a$, kN, - for combined load

For thrust ball bearings, the following equations can be used:

$$P_a = F_a$$
, kN, - for pure axial load
 $P_a = XF_r + YF_a$, kN, - for combined load

where:

$$F_r$$
 = the radial component of the load, kN F_a = the axial component of the load, kN

In the texts preceding the bearing tables, for some groups of bearings there are given details for determining the equivalent load. Values of the coefficients X and Y can be found in tables.

For bearings operating at constant speed, the basic rating life expressed in operating hours can be calculated using the equation:

$$L_{10h} = \frac{1\,000\,000}{60\,n} (C\,/\,P)^P \text{ sau } L_{10h} = \frac{16\,666}{n} (C\,/\,P)^P$$

where:

n = rotational speed, r/min

Values of the basic rating life L_{10} (millions of revolutions) as a function of the ratio C/P can be found in the table 2.1.

Values of the basic rating life L_{10h} (operating hours) as a function of the ratio C/P and speed n can be found in table 2.2 for ball bearings and table 2.3 for roller bearings.

When determining the bearing size it is necessary to base the calculations on the rating life corresponding to the purpose of operation.

It usually depends on the machine type, service life and the requirements regarding operational safety.

Approximate values of the service life for various classes of machines and equipments for general purposes are given in table 2.4

The basic rating life L_{10h} of the bearings can be determined as a function of service life, using the life calculation chart on page 22.

Load ratio C/P for various life values L₁₀ (milions of revolutions)

Table 2,1

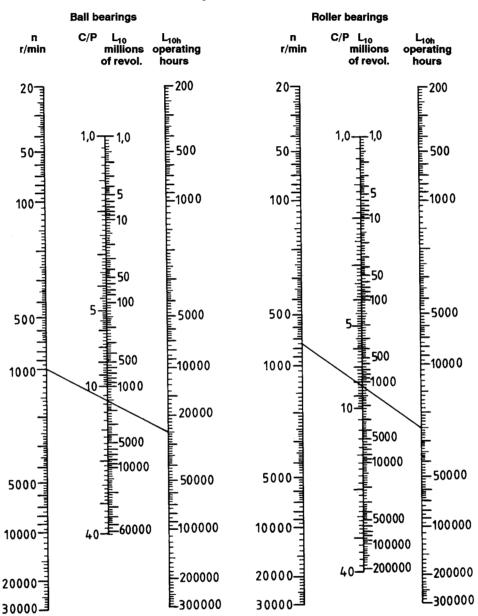
L ₁₀	C/P Ball bearings	Roller bearings	L ₁₀	C/P Ball bearings	Roller bearings
0,5	0,793	0,812	600	8,43	6,81
0,75	0,909	0,917	650	8,66	6,98
1	1	1	700	8,88	7,14
1,5	1,14	1,13	750	9,09	7,29
2	1,26	1,24	800	9,28	7,43
3	1,44	1,39	850	9,47	7,56
4	1,59	1,52	900	9,65	7,7
5	1,71	1,62	950	9,83	7,82
6	1,82	1,71	1 000	10	7,94
8	2	1,87	1 100	10,3	8,17
10	2,15	2	1 200	10,6	8,39
12	2,29	2,11	1 300	10,9	8,59
14	2,41	2,21	1 400	11,2	8,79
16	2,52	2,3	1 500	11,4	8,97
18	2,62	2,38	1 600	11,7	9,15
20	2,71	2,46	1 700	11,9	9,31
25	2,92	2,63	1 800	12,2	9,48
30	3,11	2,77	1 900	12,4	9,63
35	3,27	2,91	2 000	12,6	9,78
40	3,42	3,02	2 200	13	10,1
45	3,56	3,13	2 400	13,4	10,3
50	3,68	3,23	2 600	13,8	10,6
60	3,91	3,42	2 800	14,1	10,8
70	4,12	3,58	3 000	14,4	11
80	4,31	3,72	3 200	14,7	11,3
90	4,48	3,86	3 400	15	11,5
100	4,64	3,98	3 600	15,3	11,7
120	4,93	4,2	3 800	15,6	11,9
140	5,19	4,4	4 000	15,9	12
160	5,43	4,58	4 500	16,5	12,5
180	5,65	4,75	5 000	17,1	12,9
200	5,85	4,9	5 500	17,7	13,2
220	6,04	5,04	6 000	18,2	13,6
240	6,21	5,18	6 500	18,7	13,9
260	6,38	5,3	7 000	19,1	14,2
280	6,54	5,42	7 500	19,6	14,5
300	6,69	5,54	8 000	20	14,8
320	6,84	5,64	8 500	20,4	15,1
340	6,98	5,75	9 000	20,8	15,4
360	7,11	5,85	9 500	21,2	15,6
380	7,24	5,94	10 000	21,5	15,8
400	7,37	6,03	12 000	22,9	16,7
420	7,49	6,12	14 000	24,1	17,5
440	7,61	6,21	16 000	25,2	18,2
460	7,72	6,29	18 000	26,2	18,9
480	7,83	6,37	20 000	27,1	19,5
500	7,94	6,45	25 000	29,2	20,9
550	8,19	6,64	30 000	31,1	22

Ball bearings - load ratio C/P for various basic rating lives L_{10h} (operating hours) at various speeds n (r/min)

Table 2.2

10h	C/P when n = 50	100	150	200	250	300	400	500	750	1 000	1 500
00	0,67	0,84	0,97	1,06	1,14	1,22	1,34	1,44	1,65	1,82	2,08
00	1,14	1,44	1,65	1,82	1,96	2,08	2,29	2,47	2,82	3,11	3,56
000	1,44	1,82	2,08	2,29	2,47	2,62	2,88	3,11	3,56	3,91	4,48
250	1,55	1,96	2,24	2,47	2,66	2,82	3,11	3,35	3,83	4,22	4,83
600	1,69	2,13	2,43	2,68	2,88	3,07	3,37	3,63	4,16	4,58	5,24
2 000	1,82	2,29	2,62	2,88	3,11	3,30	3,63	3,91	4,48	4,93	5,65
2 500	1,96	2,47	2,82	3,11	3,35	3,56	3,91	4,22	4,83	5,31	6,08
3 200	2,13	2,68	3,07	3,37	3,63	3,86	4,25	4,58	5,24	5,77	6,60
1 000	2,29	2,88	3,30	3,63	3,91	4,16	4,58	4,93	5,65	6,21	7,11
5 000	2,47	3,11	3,56	3,91	4,22	4,48	4,93	5,31	6,08	6,69	7,66
6 300	2,66	3,36	3,84	4,23	4,55	4,84	5,33	5,74	6,57	7,23	8,28
3 000	2,88	3,63	4,16	4,58	4,93	5,24	5,77	6,21	7,11	7,83	8,96
10 000	3,11	3,91	4,48	4,93	5,31	5,65	6,21	6,69	7,66	8,43	9,65
12 500	3,35	4,22	4,83	5,31	5,72	6,08	6,69	7,21	8,25	9,09	10,4
16 000	3,63	4,58	5,24	5,77	6,21	6,60	7,27	7,83	8,96	9,86	11,3
20 000	3,91	4,93	5,65	6,21	6,69	7,11	7,83	8,43	9,65	10,6	12,2
25 000	4,22	5,31	6,08	6,69	7,21	7,66	8,43	9,09	10,4	11,4	13,1
32 000	4,58	5,77	6,60	7,27	7,83	8,32	9,16	9,86	11,3	12,4	14,2
10 000	4,93	6,21	7,11	7,83	8,43	8,96	9,86	10,6	12,2	13,4	15,3
50 000	5,31	6,69	7,66	8,43	9,09	9,65	10,6	11,4	13,1	14,4	16,5
3 000	5,74	7,23	8,28	9,11	9,81	10,4	11,5	12,4	14,2	15,6	17,8
000	6,21	7,83	8,96	9,86	10,6	11,3	12,4	13,4	15,3	16,9	19,3
00 000	6,69	8,43	9,65	10,6	11,4	12,2	13,4	14,4	16,5	18,2	20,8
000 000	8,43	10,6	12,2	13,4	14,4	15,3	16,9	18,2	20,8	22,9	26,2

-10h	C/P when n = 2 000	2 500	3 000	4 000	5 000	6 000	8 000	10 000	15 000	20 000	30 000
100	2,29	2,47	2,62	2,88	3,11	3,30	3,63	3,91	4,48	4,93	5,65
500	3,91	4,22	4,48	4,93	5,31	5,65	6,21	6,69	7,66	8,43	9,65
1 000	4,93	5,31	5,65	6,21	6,69	7,11	7,83	8,43	9,65	10,6	12,2
1 250	5,31	5,72	6,08	6,69	7,21	7,66	8,43	9,09	10,4	11,4	13,1
1 600	5,77	6,21	6,60	7,27	7,83	8,32	9,16	9,86	11,3	12,4	14,2
2 000	6,21	6,69	7,11	7,83	8,43	8,96	9,86	10,6	12,2	13,4	15,3
2 500	6,69	7,21	7,66	8,43	9,09	9,65	10,6	11,4	13,1	14,4	16,5
3 200	7,27	7,83	8,32	9,16	9,86	10,5	11,5	12,4	14,2	15,7	17,9
4 000	7,83	8,43	8,96	9,86	10,6	11,3	12,4	13,4	15,3	16,9	19,3
5 000	8,43	9,09	9,65	10,6	11,4	12,2	13,4	14,4	16,5	18,2	20,8
6 300	9,11	9,81	10,4	11,5	12,4	13,1	14,5	15,6	17,8	19,6	22,5
8 000	9,86	10,6	11,3	12,4	13,4	14,2	15,7	16,9	19,3	21,3	24,3
10 000	10,6	11,4	12,2	13,4	14,4	15,3	16,9	18,2	20,8	22,9	26,2
12 500	11,4	12,3	13,1	14,4	15,5	16,5	18,2	19,6	22,4	24,7	28,2
16 000	12,4	13,4	14,2	15,7	16,9	17,9	19,7	21,3	24,3	26,8	30,7
20 000	13,4	14,4	15,3	16,9	18,2	19,3	21,3	22,9	26,2	28,8	33,0
25 000	14,4	15,5	16,5	18,2	19,6	20,8	22,9	24,7	28,2	31,1	35 ,6
32 000	15,7	16,9	17,9	19,7	21,3	22,6	24,9	26,8	30,7	33,7	38,6
40 000	16,9	18,2	19,3	21,3	22,9	24,3	26,8	28,8	33,0	36,3	41,6
50 000	18,2	19,6	20,8	22,9	24,7	26,1	28,8	31,1	35,6	39,1	44,8
63 000	19,6	21,1	22,5	24,7	26,6	28,3	31,2	33,6	38,4	42,3	48,4
80 000	21,3	22,9	24,3	26,8	28,8	30,7	33,7	36,3	41,6	45,8	52,4
100 000	22,9	24,7	26,2	28,8	31,1	33,0	36,3	39,1	44,8	49,3	56,5
200 000	28,8	31,1	33,0	36,3	39,1	41,6	45,8	49,3	56,5	62,1	71,1


Roller bearings - load ratio C/P for various basic rating lives L_{10h} (operating hours) at various speeds n (r/min) Table 2.3

L10h	C/P when n = 50	100	150	200	250	300	400	500	750	1 000	1 500
100	0.70	0.86	0.97	1,06	1,13	1,19	1,30	1,39	1,57	1,71	1,93
500	1,13	1,39	1,57	1,71	1,83	1,93	2,11	2,25	2,54	2,77	3,13
1 000	1,39	1,71	1,93	2,11	2,25	2,38	2,59	2,77	3,13	3,42	3,86
1 250	1,49	1,83	2,07	2,25	2,41	2,54	2,77	2,97	3,35	3,65	4,12
1 600	1,60	1,97	2,23	2,43	2,59	2,74	2,99	3,19	3,61	3,93	4,44
2 000	1,71	2,11	2,38	2,59	2,77	2,93	3,19	3,42	3,86	4,20	4,75
2 500	1,83	2,25	2,54	2,77	2,97	3,13	3,42	3,65	4,12	4,50	5,08
3 200	1,97	2,43	2,74	2,99	3,19	3,37	3,68	3,93	4,44	4,84	5,47
4 000	2,11	2,59	2,93	3,19	3,42	3,61	3,93	4,20	4,75	5,18	5,85
5 000	2,25	2,77	3,13	3,42	3,65	3,86	4,20	4,50	5,08	5,54	6,25
6 300	2,42	2,97	3,36	3,66	3,91	4,13	4,51	4,82	5,44	5,93	6,70
8 000	2,59	3,19	3,61	3,93	4,20	4,44	4,84	5,18	5,85	6,37	7,20
10 000	2,77	3,42	3,86	4,20	4,50	4,75	5,18	5,54	6,25	6,81	7,70
12 500	2,97	3,65	4,12	4,50	4,81	5,08	5,54	5,92	6,68	7,29	8,23
16 000	3,19	3,93	4,44	4,84	5,18	5,47	5,96	6,37	7,20	7,85	8,86
20 000	3,42	4,20	4,75	5,18	5,54	5,85	6,37	6,81	7,70	8,39	9,48
25 000	3,65	4,50	5,08	5,54	,5,92	6,25	6,81	7,29	8,23	8,97	10,1
32 000	3,93	4,84	5,47	5,96	`6,37	6,73	7,34	7,85	8,86	9,66	10,9
40 000	4,20	5,18	5,85	6,37	6,81	7,20	7,85	8,39	9,48	10,3	11,7
50 000	4,50	5,54	6,25	6,81	7,29	7,70	8,39	8,97	10,1	11,0	12,5
63 000	4,82	5,93	6,70	7,30	7,81	8,25	8,99	9,61	10,9	11,8	13,4
80 000	5,18	6,37	7,20	7,85	8,39	8,86	9,66	10,3	11,7	12,7	14,4
100 000	5,54	6,81	7,70	8,39	8,97	9,48	10,3	11,0	12,5	13,6	15,4
200 000	6,81	8,39	9,48	10,3	11,0	11,7	12,7	13,6	15,4	16,7	18,9

-10h	C/P when n = 2 000	2 500	3 000	4 000	5 000	6 000	8 000	10 009	15 000	20 000	30 000
100	2,11	2,25	2,38	2,59	2,77	2,93	3,19	3,42	3,86	4,20	4,75
500	3,42	3,65	3,86	4,20	4,50	4,75	5,18	5,54	6,25	6,81	7,70
1 000	4,20	4,50	4,75	5,18	5,54	5,85	6,37	6,81	7,70	8,39	9,48
1 250	4,50	4,81	5,08	5,54	5,92	6,25	6,81	7,29	8,23	8,97	10,1
1 600	4,84	5,18	5,47	5,96	6,37	6,73	7,34	7,85	8,86	9,66	10,9
2 000	5,18	5,54	5,85	6,37	6,81	7,20	7,85	8,39	9,48	10,3	11,7
2 500	5,54	5,92	6,25	6,81	7,29	7,70	∙8,39	8,97	10,1	11,0	12,5
3 200	5,96	6,37	6,73	7,34	7,85	8,29	9,03	9,66	10,9	11,9	13,4
4 000	6,37	6,81	7,20	7,85	8,39	8,86	9,66	10,3	11,7	12,7	14,4
5 000	6,81	7,29	7,70	8,39	8,97	9,48	10,3	11,0	12,5	13,6	15,4
6 300	7,30	7,81	8,25	8,99	9,61	10,2	11,1	11,8	13,4	14,6	16,5
B 000	7,85	8,39	8,86	9,66	10,3	10,9	11,9	12,7	14,4	15,7	17,7
10 000	8,39	8,97	9,48	10,3	11,0	11,7	12,7	13,6	15,4	16,7	18,9
12 500	8,97	9,59	10,1	11,0	11,8	12,5	13,6	14,5	16,4	17,9	20,2
16 000	9,66	10,3	10,9	11,9	12,7	13,4	14,6	15,7	17,7	19,3	21,8
20 000	10,3	11,0	11,7	12,7	13,6	14,4	15,7	16,7	18,9	20,6	23,3
25 000	11,0	11,8	12,5	13,6	14,5	15,4	16,7	17,9	20,2	22,0	24,9
32 000	11,9	12,7	13,4	14,6	15,7	16,5	18,0	19,3	21,8	23,7	26,8
40 000	12,7	13,6	14,4	15,7	16,7	17,7	19,3	20,6	23,3	25,4	28,7
50 000	13,6	14,5	15,4	16,7	17,9	18,9	20,6	22,0	24,9	27,1	30,6
63 000	14,6	15,6	16,5	17,9	19,2	20,3	22,1	23,6	26,7	29,1	32,8
BO 000	15,7	16,7	17,7	19,3	20,6	21,8	23,7	25,4	28,7	31,2	35,3
100 000	16,7	17,9	18,9	20,6	22,0	23,3	25,4	27,1	30,6	33,4	37,7
200 000	20,6	22,0	23,3	25,4	27,1	28,7	31,2	33,4	37,7	41,1	46,4

Basic rating life calculation chart

Example:

- 1. It is required to determine the size of a deep groove ball bearing single row, considering the following conditions:
- Basic rating life L_{10h} = 25 000 operating hours Rotational speed n = 1 000 r/min

- Rotational speed n = 1 000 r/min
 Load in bearing F_r = 5 kN

 The chart shows that C/P = 11,6; C = 11,6, P = 11,6 x 5 = 58 kN. In the catalogue on page, you can select the bearing 6310 type with the following characteristics: C_r = 61,8 kN; n = 7 000 r/min.

 2. What is the basic rating life of the bearing NU 210E which is operating under a radial load of 7,7 kN at a rotational speed n = 750 r/min?

 In the catalogue and you will find for the bearing, NU 210E type, the following values: C_r = 63,7 kN, n = 8 000 r/min. From the chart, for a bearing operated at a rotational speed of 750 r/min and C_r/P_r = 63,7/7,7 = 8,3, a basic rating life L_{10h} = 25 000 operating hours is determined.

Recommended basic rating lives for general purpose machines

Table 2.4

Application	Recommended basic rating life L 10h (operating hours)
Household machines, technical apparata for medical use, instruments, agricultural machines:	3003 000
Machines used for short periods or intermittently: electric hand tools, cranes, lifting tackles in workshops, building machines:	3 0008 000
Machines used intermittently or for short periods with high operational reliability: lifts, small cranes:	8 00012 000
Machines for use 8 hours/day but not always at full capacity: machines for general purposes, electric motors for industrial use, rotary crushes, gear drives for general purposes:	10 00025 000
Machines operating 8 hours/day at full capacity: machine tools, woodworking machines, large cranes, printing equipment, ventilators, separators, centrifuges:	20 00030 000
Machines for continuous use 24 hours/day: Rolling mill gear units, medium sized electrical machinery, compressors, pumps, textile machines, mine hoists:	40 00050 000
Hydraulic machines, rotary furnaces, capstans, propulsion machinery for sea vessels (propellers for sea vessels):	50 00010 0000
Machines for continuous use 24 hours/day with high reliability: large electric machinery, mine pumps and mine ventilators, power station plants, machines for cellulose industry, pumping units:	100 000

The basic rating life of road and rail vehicle bearings, for wheel - axle bearings, is expressed as a function of the wheel diameter and covered distance (km), using the equation:

$$L_{10} = \frac{1000}{\pi D} L_{10s}, \text{ respectively: } L_{10s} = \frac{\pi D}{1000} L_{10}$$

where:

 $\begin{array}{lll} L_{10} & & \text{-basic rating life, millions of revolutions} \\ L_{10s} & & \text{-service life distance, millions of kilometers} \\ D & & \text{-wheel diameter, m} \end{array}$

Approximate values for the service life distance (kilometers covered), in case of light loaded cars and rail vehicles are given in table 2.5.

Values for basic rating life L_{10s}

Table 2.5

Type of vehicle	L10e/10 ⁶

Wheel hub bearings for road vehicles	
- light loaded cars	0,3
- trucks, buses	0,6
Axlebox bearings for rail vehicles:	-,-
goods wagons (according to UIC)	0,8
suburban vehicles, trams	1,5
long distance passenger carriages	3
motorailers	3-4
Diesel and electric locs	3-4

In case of bearings which do not rotate but oscillate from a central position through an angle, as shown in fig.1, basic rating life can be determined as follows:

$$L_{10osc} = \frac{180}{2\,\gamma} L_{10}$$

where:

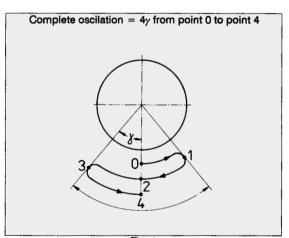
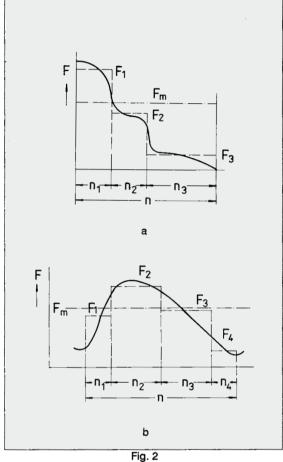


Fig. 1

L_{10osc}
γ
- basic rating life, millions of cycles
- oscillation amplitude (angle of maximum deviation from center position), degrees.

If the amplitude of oscillation is very small, it can be ignored for basic rating life determination.


Fluctuating dynamic load and speeds

In many cases, in operation speed and magnitude of load fluctuate. Therefore, a mean dynamic load is to be calculated.

The load acting on the bearing can vary as shown in fig. 2-a and 2-b.

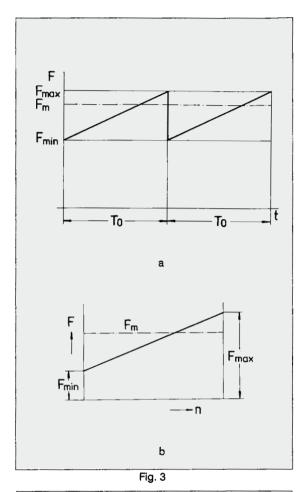
In this case, the mean load can be determined using the equation:

where:

p

- constant mean load, kN

- constant load during n1, n2,...nn revolutions, kN


- total number of revolutions (n = n₁ + +n2+..) during which loads F1, F2, .. act

- exponent -3 - for ball bearings, -10/3 - for roller bearings.

If the bearing speed is constant and the magnitude of the load is between the minimum value F_{min} and a maximum value F_{max} as shown in fig. 3 a and b, the mean load can be obtained from:

$$F_{m} = \frac{F_{min} + 2F_{max}}{3}, kN$$

If the external radial load consists of a load F1 which is constant in magnitude and direction and a load F2 which is variable in direction and constant in magnitude (F1 and F₂ acting in the same plane) as shown in fig.4, the mean

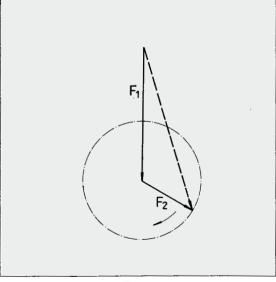


Fig. 4

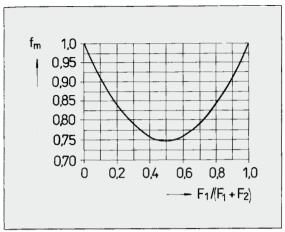


Fig. 5

load can be determined using the equation:

$$F_{m} = f_{m} (F_{1} + F_{2}), kN$$

Values for the factor f_m can be obtained from fig.5. In case of sinusoidal movement as it is shown in fig. 6, the mean load can be obtained from:

$$F_{m} = \sqrt[p]{\frac{4}{3\pi}} F_{max}, kN,$$

 $F_m \approx 0.75 \; F_{max}$, kN, for ball bearings $F_m \approx 0.77 \; F_{max}$, kN, for roller bearings

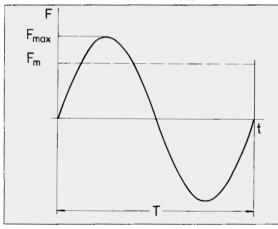


Fig. 6

In case of oscillating movements with oscillating angle γ , as shown in fig. 7, equivalent mean load can be calculated with the equation:

$$F_m = \sqrt[p]{\frac{\gamma}{90^\circ}} F_r, kN$$

If the fluctuating load acts in a pure radial direction for radial bearings and in a pure axial direction for thrust bearings, the equivalent dynamic bearing load will be:

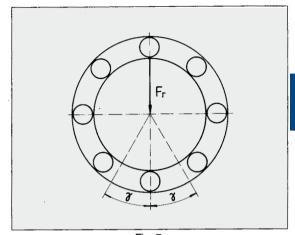


Fig. 7

$$P_r = F_m$$

For combined loads, with radial load F_r and axial load F_a constant in direction and magnitude, the equivalent dynamic load can be calculated using the equation

$$P_r = X F_r + Y F_a, kN$$

In case of combined loads, with radial and axial loads changing in time, ratio F_r/F_a being constant, the equivalent dynamic load can be calculated by:

$$P_m = X F_{rm} + Y F_{am}$$

where:

equivalent mean dynamic load, kN,

F_{rm} - radial mean load, kN, F_{am} - axial mean load, kN,

X. Y - factors of radial and axial load.

In case the direction and magnitude of the load change in time and speeds fluctuate in time, the equivalent mean dynamic load will be calculated using the equation:

$$P_{m} = \sqrt[p]{\frac{P_{1}^{p}n_{1} + P_{2}^{p}n_{2} + ... + P_{n}^{p}n_{n}}{n}}$$

where:

P,

P_n

n₁

n₂

nn

equivalent mean dynamic load, kN

equivalent dynamic load for n₁ revolutions, kN

equivalent dynamic load for n₂ revolutions, kN

equivalent dynamic load for n_n revolutions, kN

- number of revolutions for load P1

- number of revolutions for load P2

number of revolutions for load P_n
 number of revolutions (n = n₁ +

+n₂ +...+n_n)

exponent: -3 - for ball bearings,
 -10/3 - for roller bearings

Basic dynamic load of a bearing group

In case of ball and roller bearings especially, a bearing group of the same type mounted close together is required, so that heavy radial loads can be carried.

In order to take over the load uniformly these bearings should be mounted in order to equal the diameter deviations to the radial clearances.

These deviations must be kept below 1/2 of the admitted tolerance class.

Basic dynamic load for a bearing group as a function of the basic load of the single bearing can be calculated using the equation:

$$C_{ri} = C_r i^n$$

where:

 C_{ri}

i

- basic dynamic load of the bearing group,
- basic dynamic load of the single bearing, C, selected from the tables.
- number of bearings of the same type. mounted close together.
- exponent depending on the bearing type: n
 - 0,7 for ball bearings 7/9 - for roller bearings

Values of in are given in table 2.6.

Values for in

Table 2.6

i	j0,7	_i 7/9	
2	1,62	1,71	
2	1,62 2,16 2,64	1,71 2,35 2,94	
4	2,64	2,94	

The equivalent dynamic load for each group of bearings is calculated considering the specifications in the introductory text preceding the respective group.

Adjusted rating life

Basic rating life L_{10h} is often satisfactory for bearing performances. This life means a reliability of 90% for material and a modern and usual manufacturing technology, as well as for conventional operating conditions.

For a reliability over 90% (100-n)%, ISO recommends steels elaborated in better conditions, high level manufacturing technologies and specific operating conditions. In this case, adjusted rating life can be calculated as follows:

$$L_{na} = a_1 a_2 a_3 L_{10} or$$

$$L_{na} = a_1 \, a_2 \, a_3 \left(\frac{C}{P}\right)^p$$

where:

- adjusted rating life, millions of revolutions a₁

- life adjustment factor considering reliability

life adjustment factor considering the material and manufacturing conditions

 a_3 life adjustment factor considering the operating conditions.

In case of life adjustment factors a1, a2, a3 greater than 1, when calculating adjusted rating life, prudence and familiarity with bearing manufacturing and operating conditions, including shaft bending and housing stiffness are recommended.

Life adjustment factor at for reliability

The bearing failure caused by fatigue is subjected to certain statistic laws. Therefore, this fact is recommended to be considered when calculating the bearing life.

Values of the life adjustment factor a, for reliabilities over than 90% are given in table 2.7.

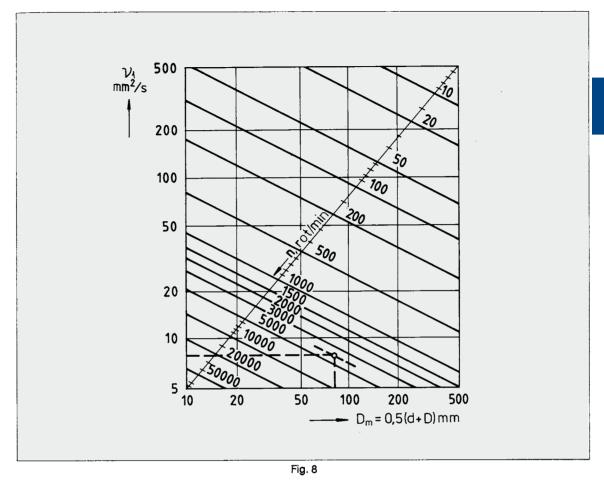
Values for factor a

Table 27

	Reliability, %	L _{na}	81	
-	90	L _{10a}	1	
	95	∟5a	0,62	
	96	L4a	0,53	
	97	L3a	0,44	
	98	L2a	0,33	
	99	Lia	0,21	

Life adjustment factor a2 for material

Life adjustment factor a2 takes into account the properties of the material, heat treatment of the steel and manufacturing technologies. For bearings, recommended.


Life adjustment factor a23 for operating conditions

The longest life of a bearing can be reached in case of hydrodynamic lubrication, namely where there is no direct contact between rolling elements and raceway due to the lubricant film. In this field, many studies have been done by world leading bearing manufacturing companies. These studies showed that there is relationship between life adjustment factor a₂ for material and life adjustment factor a₃ for operating conditions. Preferably these factors should be unified, obtaining factor a23. In this case, adjusted rating life would be:

$$L_{na} = a_1 \, a_{23} \, L_{10}$$
 or $L_{na} = a_1 \, a_{23} \, L_{10h}$

The values of a23 coefficient depend on the lubricant used for bearing lubrication, namely on the ratio of the oil viscosity at $+40^{\circ}$ C, ν (initial value) to the viscosity required for adequate lubrication at the operating temperature ν_1 . The values are given in table 2.8.

Values for factor a₂₃

Table 28

ν 1	0,1	0,2	0,5	1	1,5	2	3	4	5	
a ₂₃	0,45	0,55	0,75	1	1,3	1,6	2	2,5	2,5	•

The values of viscosity ν_1 as a function of the mean bearing diameter and operating speed are given in the diagram fig. 8.

Kinematic viscosity ν at the temperature of $+40^{\circ}\text{C}$ can be determined from the diagram fig. 9 in accordance with ISO, if the bearing operating temperature is known.

In case of grease lubrication, calculation should be done considering the basic oil viscosity and the value of the life adjustment factor a₂₃ will be smaller than 1.

Example of oil kinematic viscosity calculation for bearing lubrication: The bearing 6212 operates at a speed of 3500 r/min and a temperature of $+70^{\circ}$ C.

Mean diameter will be:

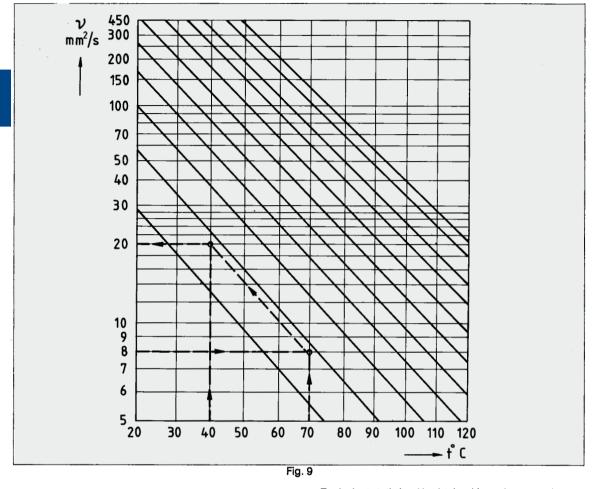
0,5 (d+D) = 0,5 (60 + 110) = 85 mm.

From the diagram fig.9, at a temperature of +70°C, for a viscosity ν_1 = 8 mm²/s, the viscosity at +40°C is 20 mm²/s, (cSt).

In this case should be selected an oil in accordance with ISO VG22 with kinematic viscosity limits: $\nu_{min}=19.8$ mm²/s (cSt) and $\nu_{max}=24.2$ mm²/s (Cst)

In case of bearing operating at temperatures higher than + 150°C, an adjustment factor f_t for temperature should be added to the life adjustment factor a₂₃. Adjusted rating life will be:

$$L_{na} = a_1 a_{23} f_t L_{10}$$
 or $L_{na} = a_1 a_{23} f_t L_{10h}$


Values for the life adjustment factor \mathbf{f}_{t} for temperature are given in table 2.9.

Values for operating temperature factor ft

Table 2.9

Operating temperature, t°C	150	200	250	300	
h	1	0,73	0,42	0,22	— J

Static load

When the bearing is stationary or rotates at slow movements or very low speeds (lower than 10 r/min), basic static load is not determined by the material fatigue but by permanent deformation caused at the rolling element/raceway contact.

It is also the case of rotating bearings when they have to sustain heavy shock loads which act during a fraction of their revolution.

Generally, the value of the load may increase up to the value of the basic static load $C_{\rm 0}$, without altering the bearing operating properties.

Equivalent static load

Combined static load (radial and axial load acting simultaneously on bearing) must be converted into an equivalent static bearing load. This is defined as the load (radial for radial bearings and axial for thrust bearings) which if applied, would cause the same permanent deformation in the bearing as the real load operating upon it.

Equivalent static load is obtained from the general equation:

$$P_0 = X_0 F_r + Y_0 F_a, kN,$$

where:

P

- equivalent static bearing load, kN,

 radial component of the heaviest static load, kN.

a - axial component of the heaviest static load, kN,

 X_0 - radial load factor of the bearing,

Y₀ - axial load factor of the bearing.

Data needed to calculate equivalent static load can be found in text and in bearing tables.

Requisite basic static load rating

When determining bearing size on the basis of the static load, a static safety factor \mathbf{s}_0 is used.

The requisite basic static load is calculated using the equation:

$$C_{or} = s_0 P_{or}, kN,$$

where:

C_{nr} - basic static load rating, kN,

s₀ - static safety factor, table 2.11,

P_{or} - equivalent static load, kN.

At high temperatures, life of the material decreases and the static load carrying capacity of bearings is reduced.

For high temperatures, basic static load is calculated using the equation:

$$C_{or} = f_{ot} s_o P_{or}$$
, kN

The values of factor f_{0t} depending on temperature is given in table 2.10

Values for temperature factor for

Table 2.10

Operating temperature, t°C	150	200	250	300	
fot	1	0,95	0,85	0,75	

Non-rotating bearings

In case of non-rotating bearings, the values of static safety factor s₀ for certain applications are given in table 2.11. These values are also valid for bearings with oscillating movements.

Values for static safety factor so

Table 2.11

Application	80
Variable pitch propeller for aircraft	0,5
Gates for barrages, dams, sluices	1
Opening bridges	1,5
Crane hooks for:	•
- large cranes without additional loads	1.5
- small cranes with additional dynamic loads	1,6

Rotating bearings

In case of fluctuating or oscillating loads and especially when heavy shock loads are acting during a fraction of revolution, it is necessary to check if the bearing has the proper static load carrying capacity.

Heavy shock loads higher than the basic static bearing load produce permanent deformations not uniformly distributed on raceway, which influence negatively upon bearing running.

Generally, heavy shock loads cannot be exactly calculated and in certain cases they produce deformations of bearing housing and consequently an unfavorable load distribution in bearing.

When a bearing rotates under maximum load, raceway becomes uniformly deformed on all its outer surface without any imprint.

For various operating conditions, maximum load acting upon the bearing is calculated with static safety factor s₀, depending on the vibrations and shock loads.

The values of static safety factor are given in table 2.12.

Values for static safety factor so

Table 2.12

Type of operation	Requir Unimp		regardir Norma	ng quiet I	running High)
	Ball bearing	Roller gs	Ball bearing	Roller gs	Ball bearin	Roller ngs
Smooth, vibration-free	0,5	1	1	1,5	2	3
Normal	0,5	1	1	1,5	2	3,5
Heavy shock loads	>1,5	>2,5	> 1,5	>3	>2	>4

For bearings with a known equivalent static load, static safety factor s₀ is necessary to be checked using the equation:

$$s_0 = \frac{C_{or}}{P_{or}}$$

If the value of s₀ is less than that recommended in table 2.12, then a bearing with a higher basic static load carrying capacity should be selected.

Basic static load for a group of bearings

Where more bearings of the same type are mounted close together to take over a static load, the load magnitude supported by these bearings will be calculated from:

$$C_{Ori} = C_{Or} i$$

where

 C_{ori}

- basic static load of the bearing group,
- basic static load of the single bearing (from tables),
- number of bearings.

3. Bearing Friction

Friction in rolling bearings is considerably lower than in sliding bearings. Power lost through friction in bearing is generally negligible, in various bearing joints and mechanisms. If a certain frictional moment is required in some applications, the coefficient of friction for the bearing should be known.

It depends on many factors such as: bearing design, speed, direction and magnitude of load, finishing quality of active surfaces, operating temperature, lubricant, bearing material etc.

The frictional moment can be calculated accurately enough using the following equation:

 $M = 0.5\mu Pd$ - for radial bearings $M = 0.5\mu P D_m$ - for thrust bearings

where:

M - frictional moment, N mm. - coefficient of friction, table 3.1

P - bearing load, N,

d - bearing bore diameter, mm,

-thrust bearing mean diameter 0,5(d + D), mm

The values of the friction coefficient μ for various bearing types are given in table 3.1.

The frictional moment can be more accurately determined with the equation:

 $M = M_0 + M_1,$

where: M_0

M₁

-frictional moment which is independent of the bearing load and depends on the hydrody-

namic friction

- resistance moment depending on the bearing load and the size of the elastic contact surfaces

Mo can be calculated from:

 $M_0 = f_0(v_1 n)^{2/3} D_m^3 10^{-7}$, for n > 2000, $M_0 = 16 f_0 D_m^3 10^{-6}$, for $n \le 2000$,

where:

- frictional moment which is independent of the Mo

bearing load, N mm

- factor which depends on the bearing type and fο lubricant, table 3.1,

 rotational speed, r/min, n

- kinematic viscosity of lubricant at operating ν_1 temperature, mm²/s. In case of grease lubrication, calculation should be done considering the basic oil viscosity,

- bearing mean diameter, mm. D_{m}

M₁ can be calculated using the equation:

 $M_1 = f_1 P_1 D_m$

where:

- load - dependent resistance moment, N mm, M₁ - factor which depends on the bearing type and f₁

load, table 3.1,

- bearing combined load, determined using the P₁

equation in the table 3.1, N,

- bearing mean diameter = 0,5 (d + D), mm. Dm

The values of the friction coefficient μ for various bearing types and factors fo and f1

Table 3.1

Bearing type		Friction coefficient μ	Factor f ₀ Factors for calculating M ₁ Lubrication		g M ₁			
			gresse ¹⁾	oil spot	oil bath	oil bath with vertic. shaft, oil jet		P ₁ 5)
								N
Deep groove ball	single row	0,0010 - 0,0020	0,75-2 ²⁾	1	2	4	(8-9)×10 ⁻⁴ (P _{Or} /C _{Or}) ^{O,}	55)
bearings	double row	0,0010 - 0,0020	3	2	4	8	(8-9) × 10 * (POr/Cor) **	3 Fa - 0,1 F
Self-aligning ball bearings		0,0010 - 0,0020	1,5-2 ²⁾	0,7-1 ²⁾	1,5-2 ²⁾	3-4 ²⁾	3×10 ⁻⁴ (P _{Or} /C _{Or}) ^{0,4}	1,4 Y ₂ F _a -0,1 F _r
Angular contact	single row	0.00400005	2	1,7	3,3	6,6	10 ⁻³ (Por/Cor) ^{0,33}	Fa - 0,1 Fr
ball bearings	double row	0,0012 - 0,0025	4	3,4	6,5	13	10 ⁻³ (P _{Or} /C _{Or}) ^{0,33}	1,4 Fa - 0,1Fr
Four-point contact bearings	•	0,0025 - 0,0045	6	2	6	9	10 ⁻³ (P _{Or} /C _{Or}) ^{0,33}	1,5 Fa + 3,6 Fr
Cylindrical roller	with cage	0,0010 - 0,0025	0,6-1	1,5-2,8	2,2-4	2,2-4 ²⁾³⁾	(2-4)×10 ⁻⁴	Fr ⁶⁾
bearings	without cage	0,0020 - 0,0040	5-10 ⁴⁾		5-10		5,5×10 ⁻⁴	Fr ⁶⁾
Needle roller	with cage	0,0020 - 0,0035	12	6	12	24	10 ⁻³	Fr
bearings	without cage	0,0035 - 0,0055	24	12	24	-	10 ⁻³	Fr
Spherical roller bearings		0,0020 - 0,0025	3,5-7	1,75-3,5	3,5-7	7 -14	(1,5-8)×10 ⁻⁴	1,35 Y ₂ F _a , F _r /F _a < Y ₂ F _r (1+0,3 (Y ₂ F _a /F _r) ³),
TdU	single row	0,0017 - 0,0020	6	3	6	8-10 ²⁾³⁾	4×10 ⁻⁴	$F_r/F_a \ge Y_2$ 2 Y F_a
Tapered roller bearings	paired	0,0030 - 0,0040	12	6	12	16-20 ²⁾³⁾	4×10 ⁻⁴	1,2 Y ₂ F _a
	ball	0,0010 - 0,0025	5,5	0,8	1,5	3	8×10 ⁻⁴ (F _a /C _{Or)} 0,33	Fa
Thrust bearings	roller	0,0050 - 0,0070	9		3,5	7	1,5×10 ⁻³	Fa
Needle roller thrust	bearings	0,0050 - 0,0075	14		5	11	1,5×10 ⁻³	Fa
Spherical roller thrust bearings		0,0020 - 0,0030	-		2,5-5	5-10	(2,3-5)×10 ⁻⁴	Fa, F _{rmax} < 0,55 Fa

¹⁾ The values apply to normal operating conditions. In case of bearing relubrication, they apply after 2...4 operating hours.

Symbols

P0 = Equivalent static load, C0 = Basic static load

F_r = Radial component of dynamic bearing load,

F_a = Axial component of dynamic bearing load

Y, Y2 = axial load factors

Values for factor f2

Table 3.2

Bearing type	Lubrication	
	oil	grease
Bearings with cage		
- E design	0,002	0,003
- other bearings	0,006	0,009
Bearings without cage	·	,
- single row	0,003	0,006
- double row	0,009	0,015

The values of factor f_2 in the table 3.2 are valid only if the value of ratio F_a/F_r doesn't exceed:

- 0,5 = for single row cylindrical roller, E design
- 0,4 = for bearings with cage and without cage, normal

desian

- 0,25 = for double row cylindrical roller bearings, without cage

Frictional moment for sealed bearings

In case of sealed bearings, the seal washers produce additional frictions which usually exceed those arising from the bearing.

The frictional moment M_3 for a bearing which is sealed on both sides can be calculated using the following equation:

The low values apply to small series bearings, the high values to large series bearings.

The values are valid for oil jet lubrication. For oil bath lubrication and a vertical shaft, the value should be doubled.

⁴⁾ The values for low speeds up to 20% of the speed values given in the catalogue. At higher speeds they should be doubled.

5) If $P_1 < F_r$, then $P_1 = F_r$

⁶⁾ For bearings which are also axially loaded, specifications for f2, on page 30, should be considered.

$$M_3 = \frac{d+D}{f_3} + f_4$$

where:

Мз

- Frictional moment caused by seals, N mm,

ď

- Bearing bore diameter, mm

D f₃, f₄ - Bearing outside diameter, mm - Factors, table 3.3

Values for factors f3 and f4

Table 3.3

Туре	Factor	re
	f3	f4
Deep groove ball bearings 2RSR, 2RS	20	10
Self-aligning ball bearings 2RS	20	15
Single row deep groove ball bearings with extended inner ring (UC, UE, US etc.)	20	20
Bearings for water pumps	20	25
Sealed cylindrical roller bearings without cage	10	50

Starting torque

The starting torque of a rolling bearing is defined as the bearing resistance moment which must be overcome so that the bearing should start rotating from the stationary condition.

Generally, the value of the starting torque is approximately twice the load dependent moment M_1 .

For tapered roller bearings with a large contact angle (series 313, 322B and 323B), the starting torque can be four times higher and for spherical roller thrust bearings up to eight times higher.

4. Limiting Speed

The speed limit can be defined as the speed reached by a bearing if the following conditions are observed:

- the bearing load should correspond to a rating life $L_{10h} = 150\,000$ operating hours
 - the inner ring rotates
- the operational clearance should be properly chosen, considering the fit and the operating temperature
- the maximum operating temperature is of +70°C without other heating sources.
 - proper lubrication and sealing are provided
 - proper stiffness of the shaft and housing

The speed limit of bearing depends on many factors such as: bearing type, magnitude of load, tolerance class, cage design, operational clearance, lubricant, lubrication and cooling conditions etc.

In case of oil lubrication, the speed limit can be approximately determined for radial bearings as a function of the mean bearing diameter from the diagram fig. 10 and for thrust bearings as a function of the product $\sqrt{D}H$ (where H = mounting height of thrust bearings) from the diagram fig. 11.

The diagrams show both the speed limit for normal manufacturing and operating conditions, and maximum speed that can be reached only in special conditions:

- bearings that have a high accuracy (tolerance class P5, P4) should be used
 - special design and material for the cage
 - special lubrication and cooling conditions
 - radial clearance larger than normal
- proper manufacturing of the adjoint parts of the bearing (shaft and housing)
- minimum pre-load $P_{min} \ge 0,002~C_{0r}$, for roller bearings and $P_{min} \ge 0,001~C_{0r}$ for ball bearings.

In bearing tables, the values of speed limit are given both for grease and oil lubrication.

If the bearing operating conditions and the lubricant quality are not well enough known, the effective speed is recommended not to exceed 75% of the speeds indicated in this catalogue.

In case of heavy loads when the rating life is shorter than

75 000 operating hours and bearing mean diameter is larger than 100 mm, the speed from the catalogue should be multiplied by factor f in the fig. 12:

 $n_{adm} = f n, r/min$

For a bearing combined load, the speed from the catalogue should be multiplied by factor f_1 in the diagram - fig.13:

 $n_{adm} = f_1 n, r/min$

Special cases

Low speeds

At very low speeds it is impossible for an elastohydrodynamic lubricant film to be built up in the contacts between the rolling element and raceway. In such cases, lubricants with special additives should be used.

Oscillating movements

Since the rotational speed is zero at the point where the direction of rotation is reversed, an elasto-hydrodynamic lubricant film cannot be maintained in the contact areas. In such cases, lubricants with special additives should be used.

It is also necessary to analyse the inertia forces which occur and can cause damages on the raceway by temporary sliding of rolling elements at each reversal of direction

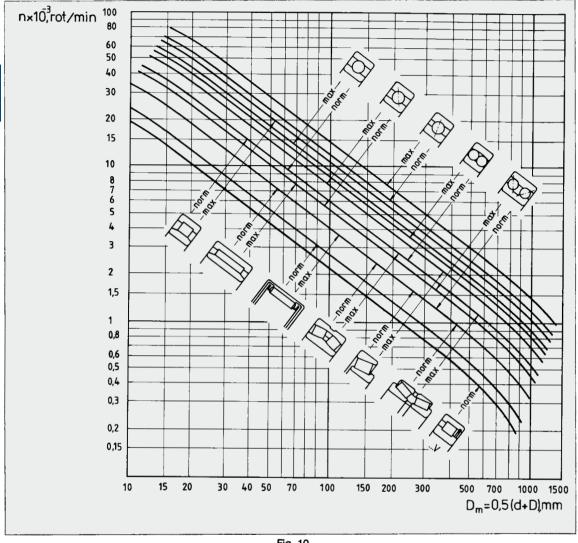


Fig. 10

Stationary conditions

If in long term stationary conditions rolling bearings vibrate, the micro-movements at the rolling element/raceway contacts produce damages on the contact surfaces.

This produces an increase in vibration level or even a shorter life.

Such damage can be avoided by insulating the bearing from external vibrations. A similar situation can also occur during bearing transport, particularly in case of large-sized bearings. Such damage can be avoided by fastening the elements.

Oil lubrication is also preferable to grease lubrication.

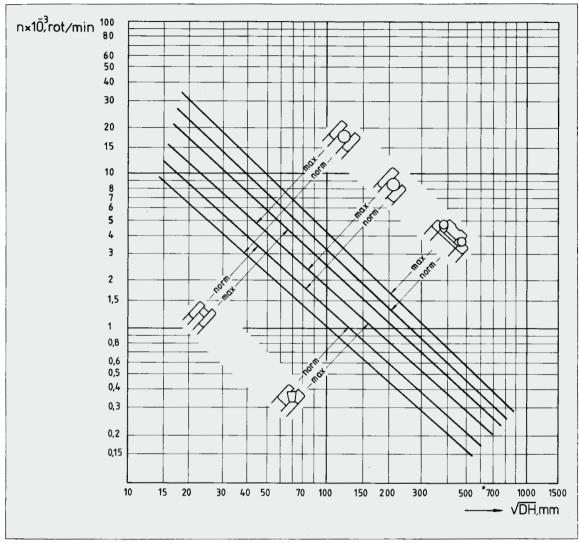
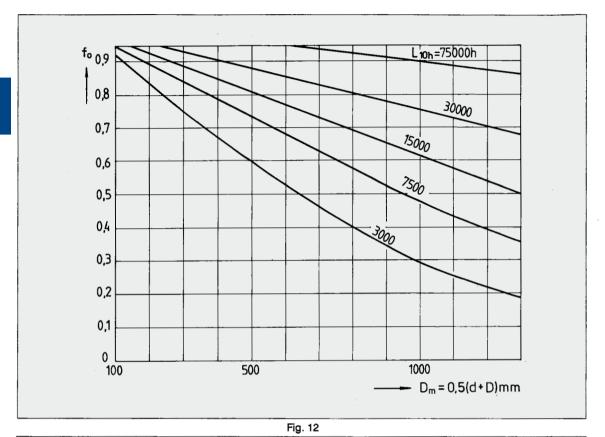
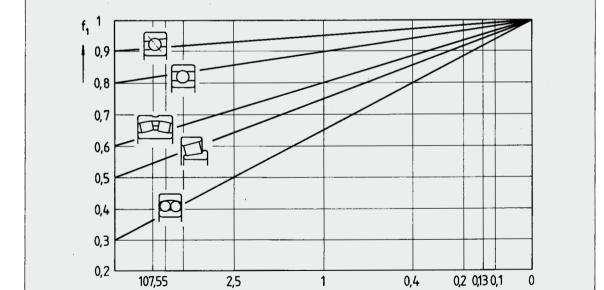




Fig. 11

 F_a / F_r

 $F_a = 0$

F_r=0

5. Bearing tolerances

Bearing tolerances have been internationally and nationally standardized in accordance with ISO 492, 199, 582, 1132.

Bearings are generally manufactured to the tolerance class P0. At request, they can also be manufactured to the tolerance classes P6, P6X, P5, P4 and P2. These bearings are used for special applications, such as very accurate shaft guidance or very high speeds.

The values of the limit deviations for these tolerance classes are given for:

- the overall dimensions of:
 - deep groove ball bearings, angular contact ball bearings, self-aligning ball bearings, spherical roller bearings, cylindrical roller bearings, needle roller bearings, tapered roller bearings,
 - tapered roller bearings with metric(mm) and inch dimensions.
 - tapered bore bearings,
 - thrust ball bearings, angular contact thrust ball bearings, cylindrical roller thrust bearings, needle roller thrust bearings,
- mounting chamfer.

Symbols

d₂

dpsmin

 Δ_{ds}

 d_{mp}

 Δ_{dmp}

- nominal bore diameter or shaft washer nominal bore diameter for thrust bearings
 - nominal diameter at the theoretical large end of the tapered bore
 - nominal bore diameter of the shaft washer for double direction thrust bearings
 - deviation of single bore diameter
- ds dpsmax maximum bore diameter, in a single radial plane
 - minimum bore diameter, in a single radial plane
 - deviation of a single bore diameter ∆_{ds} = d_s d
 - mean bore diameter, in a single radial plane
 - $d_{mp} = (d_{psmax} + d_{psmin})/2$
 - deviation of the mean bore diameter in a single radial plane; or deviation of the mean diameter at the theoretical small end of the tapered bore, in case of tapered bore bearings; or deviation

- of the mean bore diameter of the shaft washer in a single radial plane for single direction thrust bearings $\Delta_{dmp} = d_{mp} - d$
- mean diameter at the large theoretical end of the tapered bore in a single plane.
- deviation of the mean diameter at the theoretical Δ_{d1mp} large end of the tapered bore $\Delta_{d1mp} = d_{1mp} - d$

 d_{1mp}

 Δ_{Ds}

 Δ_{Dmp}

- Δ_{d2mp} - deviation of the mean bore diameter of the shaft washer for a double direction thrust bearing, in a single radial plane
- bore diameter variation in a single radial plane; Vdn or bore diameter variation of the shaft washer in a single radial plane, for single direction thrust bearings $V_{dp} = d_{psmax} - d_{psmin}$
- bore diameter variation of the shaft washer for V_{d2p} double direction thrust bearings, in a single radial plane
- mean bore diameter variation (valid only for V_{dmp} cylindrical bore) $V_{dmp} = d_{mpmax} - d_{mpmin}$
- nominal half-angle of the tapered bore D - nominal outside diameter or housing washer
- nominal diameter - nominal outside diameter of the outer ring rib D١
- D_s - single outside diameter D_{psmax} - maximum outside diameter in a single radial
- D_{psmin}
 - minimum outside diameter in a single radial
 - deviation of the single outside diameter Δ_{Ds} = $D_s - D$
- Dmp - mean outside diameter, in a single plane $D_{mp} = (D_{psmax} + D_{psmin})/2$
 - deviation of the mean outside diameter in a single radial plane; or deviation of the mean diameter of housing washer in a single radial plane, for thrust bearings $\Delta_{Dmp} = D_{mp} - D$
- outside diameter variation in a single radial V_{Dp} plane; or housing washer diameter variation in a single radial plane for double direction thrust bearings V_{Dp} = D_{psmax} - D_{psmin}
- V_{Dmp} - mean outside diameter variation
 - nominal width of the inner ring

Kea

- radial runout of assembled bearing outer ring

Bs - single width of the inner ring S_d - side face runout with reference to bore of the - inner ring single width deviation Δ_{Bs} inner rina $\Delta_{Bs} = B_s - B$ - variation in inclination of outside cylindrical sur-SD - inner ring single width variation VBs face to outer ring side face C - nominal width of the outer ring S_{ia} - side face runout of assembled inner ring with Cs - single width of the outer ring reference to raceway Δ_{Cs} - deviation of outer ring single width $\Delta_{Cs} = C_s - C$ - side face runout of assembled outer ring with Sea V_{Cs} reference to raceway single width variation of the outer ring $V_{Cs} = C_{smax} - C_{smin}$ Si thickness variation measured from middle of Т - nominal width of tapered roller bearings raceway to back seating face of shaft washer Ts. - single width of tapered roller bearings Se - thickness variation measured from middle of Δ_{Ts} - deviation of the single width of taper roller bearraceway to back face of housing washer ings $\Delta_{Ts} = T_s - T$ Δ_{Hs} - deviation of mounting height of single direction - nominal width of the inner ring and tapered roller T٠ thrust ball and roller bearings assembly Δ_{H1s} - deviation of mounting height of thrust ball bear-Tie - single width of the inner ring and tapered roller ings with sphered housing washer assembly - deviation of mounting height of double direction Δ_{H2s} Δtis deviation of the single width of inner ring and thrust ball and roller bearings tapered roller assembly $\Delta_{T1s} = T_{1s} - T_1$ $\Delta_{\rm H3s}$ - deviation of mounting height of double direction T2 - nominal width of the outer ring assembly thrust ball bearings with sphered housing wa- T_{2s} - single width of the outer ring assembly $\Delta \tau_{2s}$ - deviation of the single width of outer ring as-- deviation of mounting height of spherical roller Δ_{H4s} sembly $\Delta_{T2s} = T_{2s} - T_2$ thrust bearings Kia - radial runout of assembled bearing inner ring

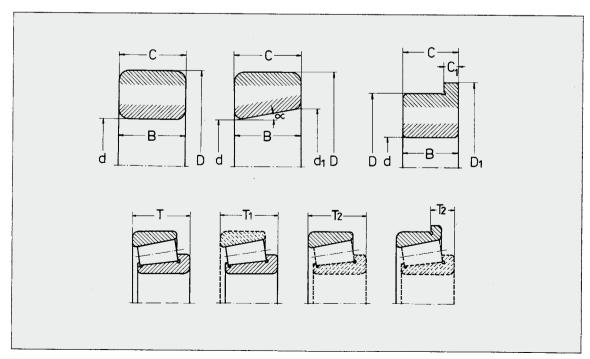


Table 5.1

Radial bearings (excepting tapered roller bearings) Tolerance class P0

Inner ring

Kia Vdp V_{dmp} V_B Δ dmp ΔBa mm Diameter series all modi-fied²⁾ nor-7,8,9 0.1 2.3.4 mai over up to high low max. max. max. max. high low low max. max. 0,61) -8 10 8 6 10 0 -40 12 2,5 10 18 10 -8 10 10 0 -120 -250 15 18 -8 10 8 6 10 0 -120 -250 20 30 0 -10 13 10 8 8 13 Ó -120 -250 20 30 50 80 50 0 -12 15 12 9 9 15 0 -120 -250 20 -15 80 0 19 19 20 0 -150 -380 25 120 00 -20 25 25 15 15 25 0 -200 -38025 120 180 -25 31 31 19 19 30 ۵ -250 -500 30 180 250 315 400 250 ٥ -30 38 38 23 23 40 0 -300 -500 30 26 30 34 315 --35 44 50 44 50 26 30 -500 0 50 0 -35035 400 500 0 -40 60 -400 40 0 -630

38

34

38

56

63

1) This value included.

Deviations µm

800

1 000

2 000

500 630 800

1 000

1 250

1 600

Deviations µm

-45

-50

-75

-100

-125

-160

-200

٥

ō

0

ō

56

63

Outer ring

85

70

80

90

100

120

140

0

0

0

ō

-450

-500

-750

-1 000

-1 250

-1 600

-2 000

50

60

70

80

100

120

140

Table 5.2

nm		∆Dmp		V _{Dp} 3)				V _{Dmp} 3)	Kea	∆Cs		VCs
				Open be	arings		Shielde bearing	d s ²)				
				Diamete 7,8,9	r series 0,1	2,3,4	2,3,4	-				
over	up to	high	low	max.	max.	max.	max.	max.	max.	high	low	max.
2,5 ¹⁾	6	0	-8	10	8	6	10	6	15	Values	are identic	al to ΔBs and VBs for the
3 I	18	ō	-8	10	8	6	10	6	15	inner rir	a of the s	ame bearing.
18	30	ŏ	-9	12	9	7	12	7	15			
30	50	0	-11	14	11	8	16	8	20			
50	80	0	-13	16	13	10	20	10	25			
80	120	0	-15	19	19	11	26	11	35			
120	150	0	-18	23	23	14	30	14	40			
150	180	0	-25	31	31	19	38	19	45			
180	250	0	-30	38	38	23	_	23	50			
250	315	0	-35	44	44	26	_	26	60			
315	400	0	-40	50	50	30	-	30	70			
100	500	0	-45	56	56	34	-	34	80			
500	630	0	-50	63	63	38	-	38	100			
330	800	0	-75	94	94	55	-	55	120			
B00	1 000	0	-100	125	125	75	-	75	140			
1 000	1 250	0	-125	-	-	-	-	~	160			
1 250	1 600	0	-160	_	_	_	_	_	190			
600	2 000	Ō	-200	_	_	-	_	_	220			
2 000	2 500	ō	-250	_	_	_	_	_	250			

This value included.

2) For bearings of diameter series 7,8,9,0 and 1 values are not indicated.

²⁾ It refers to isolated bearing ring for paired mounting or stack mounting.

³⁾ Values are valid before mounting the snap ring or shields or after their dismounting.

Inner ring

Deviations µm

d		∆dmp		Vdp			V _{dmp}	Kia	∆Ве			V _{Be}
mm				Diamete 7,8,9	er series 0,1	2,3,4			all	normal	modified	1²⁾
over	up to	high	low	max.	max.	max.	max.	max.	high	low	max.	max.
0,6 ¹⁾ 2,5	2,5	0	-7	9	7	5	5	5	0	-40	_	12
2,5	10	0	-7	9	7	5	5	6	0	-120	-250	15
10	18	0	-7	9	7	5	5	7	0	-120	-250	20
18	30	0	-8	10	8	6	6	8	0	-120	-250	20
30	50	0	-10	13	10	8	8	10	0	-120	-250	20
50	80	0	-12	15	15	9	9	10	0	150	-380	25
80	120	0	-15	19	19	11	11	13	0	-200	-380	25
120	180	0	-18	23	23	14	14	18	0	-250	-500	30
180	250	0	22	28	28	17	17	20	0	-300	-500	30
250	315	ŏ	-25	31	31	19	19	25	ŏ	-350	-500	35
315	400	ŏ	-30	38	38	23	23	30	ō	-400	-630	40
400	500	ŏ	-35	44	44	26	26	35	Ō	-450	-	45
500	630	0	-40	50	50	30	30	40	0	-500	-	50

Outer ring

Table 5.3

Devia	lions μm											Table 5.4
D		ΔDmp		V _{Dp} 3)				V _{Dmp} ²	⁽⁾³⁾ Kea	ΔCs		VCs
mm				Open b	earings	Shielde	d bearings					
				Diamete 7,8,9	er series 0,1	2,3,4	0,1,2, 3,4					
over	up to	high	low	max.	max.	max.	max.	max.	max.	high	low	max.
2,5 ¹⁾	6	0	-7	9	7	5	9	5	8	Values	are identic	al to ABs and VBs for
6	18	ŏ	- ' 7	9	7	5	ě	5	8	the inne		and abs and the total
18	30	ō	-8	10	8	. 6	10	6	9			
30	50	ō	-9	11	9	7	13	6 7	10			
50	80	0	-11	14	11	8	16	8	13			
80	120	0	-13	16	16	10	20	10	18			
120	150	0	-15	19	19	11	25	11	20			
150	180	0	-18	23	23	14	30	14	23			
180	250	0	~20	25	25	15	_	15	25			
250	315	0	-25	31	31	19	-	19	30			
315	400	0	-28	35	35	21	-	21	35			
400	500	0	-33	41	41	25	-	25	40			
500	630	0	-38	48	48	29	-	29	50			
630	800	0	-45	56	56	34	_	34	60			
800	1 000	0	-60	75	75	45	_	45	75			

This value included.
 It refers to isolated bearing ring for paired mounting or stack mounting.

This value included.
 For bearings of diameter series 7,8 and 9 values are not indicated.
 Values are valid before mounting the snap ring or shields or after their dismounting.

Inner ring

Deviations µm

Table 5.5

d		Δ dmp		Vdp		Vdmp	Kia	Sd	S _{ja} ²⁾	$\Delta \mathbf{Bs}$			∨ _{Bs}
mm				Diamete 7,8,9	0,1, 2,3,4					ali	norm.	modi- fied ³⁾	
over	up to	sup	low	max.	max.	max.	max.	max.	max.	high	low	low	max.
0,6 ¹⁾	2,5	0	5	5	4	3	4	7	7	0	-40	-250	5
2,5	10	0	-5	5	4	3	4	7	7	0	-40	-250	5
10	18	0	-5	5	4	3	4	7	7	0	-80	-250	5
18	30	0	-6	6	5	3	4	8	8	0	-120	-250	5
30	50	0	-8	8	6	4	5	8	8	0	-120	-250	5
50	80	0	-8	9	7	5	5	8	8	0	-150	-250	6
80	120	0	-10	10	8	5	6	9	9	0	-200	-380	7
120	180	0	-13	13	10	7	8	10	10	0	-250	-380	8
180	250	0	-15	15	12	8	10	11	13	0	-300	-500	10
250	315	0	-18	18	14	9	13	13	15	0	-350	-500	13
315	400	0	-25	25	18	12	15	15	20	0	-400	-630	15

Outer ring

Deviat	t ions μm					Ou	iei iiiig						Table 5.6
D mm		∆Dmp		V _{Dp} ²⁾		VDmp	Kea	SD	Sea 3)	ΔCs		VCs	
114144				Diamete 7,8,9	0,1,2, 3,4								
over	up to	high	low	max.	max.	max.	max.	max.	max.	high	low	max.	
2,5 ¹⁾	6	0	-5	5	4	3	5	8	8	Identica	l to ΔBs	5	
6	18	0	-5	5 5	4	3	5	8	8	for the in	nner	5	
18	30	0	-6	6	5	3	6	8 .	8	ring		5	
30	50	0	-7	7	5	4	7	8	8	-		5	
50	80	٥	-9	9	7	5	8	8	10			6	
80	120	0	-10	10	8	5	10	9	11			8	
120	150	0	-11	11	8	6	11	10	13			8	
150	180	0	-13	13	10	7	13	10	14			8	
180	250	0	-15	15	11	8	15	11	15			10	
250	315	0	-18	18	14	9	18	13	18			11	
315	400	0	-20	20	15	10	20	13	20			13	
400	500	0	-23	23	17	12	23	15	23			15	
500	630	0	-28	28	21	14	25	18	25			18	
630	800	0	-35	35	26	18	30	20	30			20	

This value included.
 Applies only to ball bearings.
 It refers to single bearing ring for paired mounting or stack mounting.

This value included.
 Do not apply to shielded bearings.
 Apply to ball bearings.

Deviations µm

nner ring	

d mm		$\Delta_{dmp,\Delta}$	ds ²⁾	Vdp		V_{dmp}	Kia	Sd	S _{ia} 3)	ΔBs			VBs
11111				Diamete 7,8,9	o,1,2,3,4					ali	normal	modifie	d ⁴⁾
over	up to	high	low	max.	max.	max.	max.	max.	max.	high	low	low	max.
0,6 ¹⁾	2,5	0	-4	4	3	2	2,5	3	3	0	-40	-250	2,5
2,5	10	0	-4	4	3	2	2,5	3	3	0	-40	-250	2,5
10	18	0	-4	4	3	2	2,5	3	3	О	-80	-250	2,5
18	30	0	-5	5	4	2,5	3	4	4	0	-120	-250	2,5
30	50	0	-6	6	5	3	4	4	4	0	-120	-250	3
50	80	0	-7	7	5	3,5	4	5	5	0	-150	-250	4
80	120	0	-8	8	6	4	5	5	5	0	-200	-380	4
120	180	0	-10	10	8	5	6	6	7	0	-250	-380	5
180	250	0	-12	12	9	6	8	7	8	0	-300	-500	6

	iati		

Outer	ring
-------	------

Table 5.8

Table 5.7

D mm	∆Dmp,∆	Ds ²⁾		V Dp ³⁾		V_{Dmp}	Kea	SD	Sea 4)	∆Cs		VCs	
mm				Diamete 7,8,9	or series 0,1,2,3,4	-							
over	up to	high	low	max.	max.	max.	max.	max.	max.	high	low	max.	
2,5 ¹⁾	6	0	-4	4	3	2	3	4	5	Identical to		2,5	
8	18	0	-4	4	3	2	3	4	5	fot the int	ner	2,5	
18	30	0	-5	5	4	2,5 3	4	4	5	ring		2,5 2,5	
30	50	0	-6	6	5	3	5	4	5			2,5	
50	80	0	-7	7	5	3,5	5	4	5			3	
80	120	0	-8	8	6	4	6	5	6			4	
120	150	0	-9	9	7	5 5	7	5	7			5	
150	180	0	-10	10	8	5	8	5	8			5	
180	250	0	-11	11	8	6	10	7	10			7	
250	315	0	-13	13	10	7	11	8	10			7	
315	400	0	-15	15	11	8	13	10	13			8	

¹⁾ This value included.
2) Apply only to bearings of diameter series 0,1,2,3,4.
3) Apply only to ball bearings.
4) It refers to single bearing ring for paired mounting or stack mounting.

This value included.
 Apply to bearings of diameter series 0,1,2,3 and 4.
 Do not apply to sealed and shielded bearings.
 Apply only to ball bearings.

Inner ring

Deviations μ m

Table 5.9

d mm		∆dmp,∆	ds	V _{dp}	V _{dmp}	K _{ia}	Sd	s _{ia} ²⁾	∆Bs		V _{Bs}	
over	up to	high	low	max.	max.	max.	max.	max.	high	low	max.	
0,6 ¹⁾ 2,5	2,5 10	0	-2,5 -2,5	2,5 2,5	1,5 1,5	1,5 1,5	1,5 1,5	1,5 1,5	0	-40 -40	1,5 1,5	
2,5 10 18	18 30	0	-2,5 -2,5 -2,5	2,5 2,5 2,5	1,5 1,5 1,5	1,5 1,5 2,5	1,5 1,5 1,5	1,5 1,5 2,5	0	-80 -120	1,5 1,5 1,5	
30	50	0	-2,5	2,5	1,5	2,5	1,5	2,5	0	-120	1,5	
50 80 120	80 120 150	0 0 0	-4 -5 -7	4 5 7	2 2,5 3,5	2,5 2,5 2,5	1,5 2,5 2,5	2,5 2,5 2,5	0 0 0	-150 -200 -250	1,5 2,5 2,5	
120	180	0	-7 -7	7	3,5 3,5	2,5 5	2,5 4	2,5 5	0	-300	4	
180	250	ŏ	-8	8	4	5	5	5	ō	-350	5	

Outer ring

Deviat	ions μm						ito: rilig					Table 5.10
D mm		∆Dmp-∆	\Ds	VDp	VDmp	Kea	s ը ²⁾³⁾	S _{ea} ²⁾	ΔCs		VCs	
over	up to	high	low	max.	max.	max.	max.	max.	high	low	max.	
2,5 ¹⁾ 6 18 30	6 18 30 50	0 0 0	-2,5 -2,5 -4 -4	2,5 2,5 4 4	1,5 1,5 2 2	1,5 1,5 2,5 2,5	1,5 1,5 1,5 1,5	1,5 1,5 2,5 2,5	Identical t for the inr ring		1,5 1,5 1,5 1,5	
50 80 120 150	80 120 150 180	0 0 0	-4 -5 -5 -7	4 5 5 7	2 2,5 2,5 3,5	4 5 5 5	1,5 2,5 2,5 2,5	4 5 5 5			1,5 2,5 2,5 2,5	
180 250 315	250 315 400	0 0 0	-8 -8 -10	8 8 10	4 4 5	7 7 8	4 5 7	7 7 8			4 5 7	

This value included.
 Apply only to ball bearings.

This value included.
 Do not apply to bearings with rib on the inner ring.
 Apply only to ball bearings.

Deviations μm

Tolerance class SP

inner ring

Tabelul 5.11

d		Cylind	rical bore	•	Тарего	ed bore									
mm		∆dmp\	⁄∆ds	۷dp	Δds		Vdp	∆d1mj	o−∆dmp	∆ве		VBs	Kia	Sd	Sia
over	up to	low	high	max.	low	high	max.	low	high	low	high	max.	max.	max.	max.
_	18	- 5	0	3	_	_	_	_		-100	0	5	3	8	8
18	30	-6	Ō	3	0	+10	3	0	+4	-100	ō	5	3	8	8
30	50	-8	0	4	0	+12	4	0	+4	-120	0	5	4	8	8
50	80	-9	0	5	0	+ 15	5	0	+5	-150	0	6	4	8	8
80	120	-10	0	5	0	+20	5	0	+6	-200	0	7	5	9	9
120	180	-13	ō	7	Ō	+25	7	ō	+8	-250	ō	8	6	10	10
180	250	-15	0	8	0	+30	8	0	+10	-360	0	10	8	11	13
250	315	-18	0	9	0	+35	9	0	+12	-350	0	13	10	13	15
315	400	-23	0	12	0	+40	12	0	+ 13	-400	o	15	12	15	20
400	500	-28	Ó	14	0	+45	14	Ō	+15	-450	Ö	25	12	18	23
500	630	-35	0	18	0	+50	18	Ō	+17	-500	_	30	15	20	25

Outer ring

Deviations µm Table 5.12 V_Cs D Δ_{Dmp} , Δ_{Ds} V_{Dp} Kea SD Sea ΔCs mm over up to low high max. max. max. max. 30 50 80 120 50 80 120 150 -7 5 5 8 8 8 Identical to Δg_S and $V_{\mbox{\footnotesize{BS}}}$ for the inner ring 0000 4 5 5 6 -9 -10 -11 10 6 7 10 13 150 180 250 315 180 250 315 400 -13 -15 -18 -20 7 8 8 10 0000 10 14 15 11 9 13 13 18 20 11 13 400 500 630 500 600 800 -23 -28 -35 12 14 18 15 17 20 15 18 20 23 25 30 000

Inner ring

Deviations µm

Table 5.13

d		Cylind	rical bore	•	Taper	ed bore									
mm		∆dmp,	∆ds	Vdp	∆ds		V _{dp}	∆d1m _j	o–∆dmp	Δgs		VBs	Kia	Sd	Sia
over	up to	low	high	max.	łow	high	max.	low	high	low	high	max.	max.	max.	max.
_	18	-4	0	2	_	_	_	_	_	-25	0	1,5	1,5	2	3
18	30	-5	0	3	0	+6	3	0	+2	-25	0	1,5	1,5	3	3
30	50	-6	0	3	0	+8	3	0	+3	-30	0	2	2	3	3
50	80	-7	0	4	0	+9	4	0	+3	-40	0	3	2	4	3
80	120	-8	0	4	0	+10	4	0	+4	-50	0	3	3	4	4
120	180	-10	0	5	0	+13	5	0	+5	-60	0	4	3	5	6
180	250	-12	0	6	0	+15	6	0	+7	-75	0	5	4	6	7
250	315	-18	0	9	0	+18	8	0	+8	-90	0	6	5	6	8
315	400	-23	0	12	0	+23	12	0	+9	-100	0	8	6	8	9
400	500	-28	0	14	0	+28	14	0	+10	-150	0	10	7	9	1
500	630	-35	0	18	0	+35	18	0	+11	-200	0	12	8	12	1

Outer ring

Deviations µm

Tabelul 5.14

D mm		∆Dmp.	∆DS	V_{Dp}	Kea	SD	Sea	∆Cs VCs	
over	up to	low	high	max.	max.	max.	max.		
30 50 80 120	50 80 120 150	-5 -6 -7 -8	0 0 0	3 3 4 4	3 3 4	2 2 3 3	4 4 5 6	Identical to Δ_{BS} and V_{BS} for the innr ring	
150 180 250 315	180 250 315 400	-9 -10 -12 -14	0 0 0	5 5 6 7	4 5 6 7	3 4 4 5	7 9 9 12		
400 500 630	500 630 800	23 28 35	0 0 0	12 14 18	8 10 12	=	12 14 17		

5.2. Tapered roller bearings Tolerance class P0 and P6X

Inner ring

Outer ring

Deviat	ions μm				Ta	able 5.15
d mm		∆dmp		Vdp	V _{dmp}	Kia
over	up to	high	low	max.	max.	max.
10 ¹⁾	18	0	-12	12	9	15
18	30	0	-12	12	9	18
30	50	0	-12	12	9	20
50	80	0	-15	15	11	25
80	120	0	-20	20	15	30
120	180	0	-25	25	19	35
180	250	0	-30	30	23	50
250	315	0	-35	35	26	60
315	400	0	-40	40	30	70

Deviat	tions μm				Ta	ble 5.16
D mm		∆Dmp		VDp	VDmp	Kea
over	up to	high	low	max.	max.	max.
18 ¹⁾	30	0	-12	12	9	18
30	50	ō	-14	14	11	20
50	80	0	-16	16	12	25
80	120	0	-18	18	14	35
120	150	0	-20	20	15	40
150	180	0	-25	25	19	45
180	250	0	-30	30	23	50
250	315	0	-35	35	26	60
315	400	0	-40	40	30	70
400	500	0	-45	45	34	80
500	630	0	~50	50	38	100

¹⁾ This value included.

Tolerance class P0

Deviations	
Deviations	ип

1) This value included.

Inner and outer ring

Table 5.17

d mm		Δ Bs . Δ(Cs	ΔŢs		∆T1s		∆T2s	
over	up to	high	low	high	low	high	low	high	low
10 ¹⁾	18	0	-120	+200	0	+100	0	+100	•0
18	30	0	-120	+200	Ō	+100	ō	+100	0
30	50	0	-120	+200	0	+100	0	+100	0
50	80	0	-150	+200	0	+100	0	+100	0
80	120	0	-200	+200	-200	+100	-100	+100	~100
120	180	0	-250	+350	-250	+150	-150	+200	-100
180	250	0	-300	+350	-250	+150	-150	+200	-100
250	315	0	-350	+350	-250	+150	-150	+200	-100
315	400	0	-400	+400	-400	+200	-200	+200	-200

¹⁾ This value included.

Tolerance class P6X

Inner and outer ring

Diameter limit deviations and radial runout of the inner and outer ring for this tolerance class are the same as those of tolerance class P0.

Deviations µm

Table 5.18

20110	tiono pin											Table 3.16
d mm		∆Вs		∆Cs		ΔTs		∆T1s		∆ T2s		
over	up to	high	low	high	low	high	low	high	low	high	low	
10 ¹⁾	18	0	-50	0	-100	+100	0	+50	0	+50	0	
18	30	ō	-50	Ö	-100	+100	ō	+50	ŏ	+50	ŏ	
30	50	0	-50	0	-100	+100	Ō	+50	Ö	+50	ō	
50	80	0	-50	0	-100	+100	0	+50	0	+50	0	
80	120	0	-50	0	-100	+100	0	+50	0	+50	0	
120	180	0	-50	0	-100	+150	0	+50	0	+100	0	
180	250	0	-50	0	-100	+150	0	+50	0	+100	0	
250	315	0	-50	0	-100	+200	0	+100	0	+100	0	
315	400	0	-50	0	-100	+200	0	+100	0	+100	0	

¹⁾ This value included.

Note: Limit deviations of the diameter D_1 of the outer ring rib for bearings with ribs are in accordance with tolerance class h9.

Inner ring

Table 5.19

d mm		∆dmp		Vdp	Vdmp	K _{ia}	Sd	∆Bs		ΔTs		
over	up to	high	low	max.	max.	max.	max.	high	low	high	low	
10 ¹⁾	18	0	-7	5	5	5	7	0	-200	+200	-200	
18	30	Ō	-8	6	5	5	8	0	-200	+200	-200	
30	50	Ö	-10	8	5	6	8	0	-240	+200	-200	
50	80	0	-12	9	6	7	8	0	-300	+200	-200	
80	120	0	-15	11	8	8	9	0	-400	+200	-200	
120	180	Ō	-18	14	9	11	10	0	-500	+350	-250	
180	250	Ō	-22	17	11	13	11	0	-600	+350	-250	

¹⁾ This value included.

Deviations µm

Deviations μ m

Outer ring

Table 5.20

D mm		∆Dmp		VDp	VDmp	Kea	Sp	ΔCs
over	up to	high	low	max.	max.	max.	max.	high low
18 ¹⁾ 30 50 80	30 50 80 120	0 0	-8 -9 -11 -13	6 7 8 10	5 5 6 7	6 7 8 10	8 8 8	Identical to ΔB_S for the inner ring
120 150 180 250	150 180 250 315	0 0 0	-15 -18 -20 -25	11 14 15 19	8 9 10 13	11 13 15	10 10 11 13	
315	400	0	-28	22	14	20	13	

¹⁾ This value included.

Note Limit deviations of diameter D₁ of the outer ring for bearings with ribs are in accordance with tolerance class h9.

Inner ring

ions μm												Table 5.21
	∆dmp₁	∆ds	V_{dp}	V _{dmp}	Kia	Sd	Sia	ΔBs		Δ _{Ts}		
up to	high	low	max.	max.	max.	max.	max.	high	low	high	low	
18	0	-5	4	4	3	3	3	0	-200	+200	-200	
50	0	-8	6	5	4	4	4	0	-240	+200	-200	
			,		-							
180	0	-13	10	7	6	6	7	0	-500	+ 350	~250	
	up to 18 30 50 80	up to high 18 0 30 0 50 0 80 0 120 0 180 0	Δdmp ₁ Δds up to high low 18 0 -5 30 0 -6 50 0 -8 80 0 -9 120 0 -10 180 0 -13	Δdmp, Δds Vdp up to high low max. 18 0 -5 4 30 0 -6 5 50 0 -8 6 80 0 -9 7 120 0 -10 8 180 0 -13 10	Δdmp.Δds Vdp Vdmp up to high low max. max. 18 0 -5 4 4 30 0 -6 5 4 50 0 -8 6 5 80 0 -9 7 5 120 0 -10 8 5 180 0 -13 10 7	Δdmp₁Δds Vdp Vdmp Kia up to high low max. max. max. 18 0 -5 4 4 3 30 0 -6 5 4 3 50 0 -8 6 5 4 80 0 -9 7 5 4 120 0 -10 8 5 5 180 0 -13 10 7 6	Δdmp₁Δds Vdp Vdmp Kia Sd up to high low max. max. max. max. 18 0 -5 4 4 3 3 30 0 -6 5 4 3 4 50 0 -8 6 5 4 4 80 0 -9 7 5 4 5 120 0 -10 8 5 5 5 180 0 -13 10 7 6 6	Δdmp.Δds Vdp Vdmp Kia Sd Sia up to high low max. m	Δdmp.Δds Vdp Vdmp Kia Sd Sia ΔBs up to high low max. max. max. max. max. high 18 0 -5 4 4 3 3 3 0 30 0 -6 5 4 3 4 4 0 50 0 -8 6 5 4 4 4 0 80 0 -9 7 5 4 5 4 0 120 0 -10 8 5 5 5 5 5 0 180 0 -13 10 7 6 6 7 0	Δdmp.Δds Vdp Vdmp Kia Sd Sia ΔBs up to high low max. max. max. max. high low 18 0 -5 4 4 3 3 3 0 -200 30 0 -6 5 4 3 4 4 0 -220 50 0 -8 6 5 4 4 4 0 -240 80 0 -9 7 5 4 5 4 0 -300 120 0 -10 8 5 5 5 5 5 0 -400 180 0 -13 10 7 6 6 7 0 -500	Δdmp.Δds Vdp Vdmp Kia Sd Sia ΔBs ΔTs up to high low max. max. max. max. high low high 18 0 -5 4 4 3 3 3 0 -200 +200 30 0 -6 5 4 3 4 4 0 -200 +200 50 0 -8 6 5 4 4 4 0 -240 +200 80 0 -9 7 5 4 5 4 0 -300 +200 120 0 -10 8 5 5 5 5 0 -400 +200 180 0 -13 10 7 6 6 7 0 -500 +350	Δdmp₁Δds Vdp Vdmp Kia Sd Sia ΔBs ΔTs up to high low max. max. max. max. high low high low 18 0 -5 4 4 3 3 3 0 -200 +200 -200 30 0 -6 5 4 3 4 4 0 -200 +200 -200 50 0 -8 6 5 4 4 4 0 -200 +200 -200 80 0 -9 7 5 4 5 4 0 -300 +200 -200 120 0 -10 8 5 5 5 5 0 -400 +200 -200 180 0 -13 10 7 6 6 7 0 -500 +350 -250

¹⁾ This value included.

Outer ring

Deviations μm Table 5.22 ∆Dmp₁∆Ds V_{Dp} V_{Dmp} SD Sea ∆cs mm over up to high low max. max. max. max. max. high low 0000 5 5 7 8 4 5 5 5 4 5 5 6 4 4 5 5 5 5 6 Identical to Δp_s for the inner ring 120 150 180 250 7 8 0000 6 7 5 5 7 8 -13 -15 -18 10 11 10 10 14 10 315 400 0 -20 15 10 13 10

Note Limit deviations of diameter D₁ of the outer ring for bearings with ribs are in accordance with tolerance class h9.

¹⁾ This value included.

Tapered roller bearings, inch-metric sizes (AFBMA)

Inner ring $-\Delta_{\rm dmp}$

Table 5.23

i		Tolerand	ce classes	•								
nm		4		2		3		0		00		
over	up to	high	low	high	low	high	low	high	low	high	low	
_	76,2	+13	0	+13	0	+13	0	+13	0	+8	0	
76,2	266,7	+25	0	+25	0	+13	0	+13	0	+8	0	
266,7	304,8	+25	0	+25	0	+13	0	+13	0	-	-	
304,8	609,6	+51	0	+51	٠ 0	+25	0	-	_	-	_	
609,6	914,4	+76	0	-	_	+38	0	-	_	-	-	
914,4	1 219,2	+102	0	-	-	+51	0	-	-	-	-	
219,2	_	+127	0	_	_	+76	0	_	_	_	_	

Outer ring- Δ_{Dmp}

Deviations $\mu_{ m m}$

Deviations µm

Table 5.24

)		Tolerance classes												
mm		4		2		3		0		00				
over	up to	high	low	high	low	high	low	high	low	high	low			
-	266,7	+25	0	+25	0	+13	0	+13	0	+8	0			
266,7	304,8	+25	0	+25	0	+13	0	+13	0	-				
304,8	609,6	+51	0	+51	0	+25	0	-	-	-	-			
609,6	914,4	+76	0	+76	0	+38	O	-	_	-	_			
914,4	1 219,2	+102	0	-	_	+51	0	-	-	-	-			
1 219,2	_	+127	0	_	-	+76	0	-	-	_	-			

Assembled bearing -Kia, Kea

Deviations μm

D mm		Toleran	ce classes	1	_		
mm		4	2	3	0	00	
over	up to	max.	max.	max.	max.	max.	
_	266,7	51	38	8	4	2	
266,7	304,8	51	38	8	4	-	
304,8	609,6	51	38	18	-	-	
609,6	914,4	76	51	51	_	_	
914,4	_	76	_	76	_	_	

Assembled bearing – Δ_{Ts}

Deviati	ions µm												Table 5.26
d mm		D mm		Toleran	ce classes								
******				4		2		3		0		00	
over	up to	over	up to	high	low	high	low	high	low	high	low	high	low
-	101,6	_	_	+203	_	+203	0	+203	-203	+203	-203	+203	-203
101,6	266,7	-	-	+356	-254	+203	0	+203	-203	+203	-203	+203	-203
266,7	304,8	-	-	+356	-254	+203	0	+203	-203	+203	-203	-	-
304,8	609,6	-	508,0	+381	-381	+381	-381	+203	-203	_	-	_	_
304,8	609,6	508,0	_	+381	-381	+381	-381	+381	-381	-	_	_	-
609,6		_	_	+381	-381	-	_	+381	-381	-	_	_	_

Inner roller ring - standard outer ring assembly – Δ_{T1s}

Deviat	ions μ m												Table 5.27
d mm		D mm		Tolerance classes 4 2				3		0		00	
over	up to	over	up to	high	low	high	low	high	low	high	low	high	low
_ 101,6	101,6 304,8	-	-	+102 +152	0 -152	+102 +102	0	+102 +102	-102 -102	+102 +102	-102 -102	+102 +102	-102 -102
304,8 304,8 609,6	609,6 609,6	- 508,0	508,0 - -	+178 - +178	-178 +178 -178	+178 -178 -	-178 +178	+102 -178 +178	-102 +178 -178	- -178	-	-	-

Outer ring with gauge inner ring assembly – Δ_{T2s}

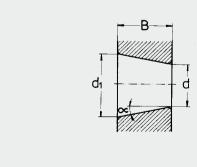
în μm								iibiy –Δ				Tabelul 5.28
	D mm		Toleran	ce classes	ı							
			4		2		3		0		00	
up to	over	up to	high	low	high	low	high	low	high	low	high	low
101,6	_	_	+ 102	0	+ 102	0	+ 102	-102	+ 102	-102	+ 102	-102
	_	_	+203	-102	+102	0	+102	-102	+102	-102	+ 102	~102
609,6	_	508,0	+203	-203	+203	-203	+ 102	-102	-	-	-	-
609,6	508,0	_	+203	-203	+203	-203	+203	-203	-	-	-	-
-	_	_	+203	-203	-	-	+203	-203	-	-	-	-
	up to 101,6 304,8 609,6 609,6	Up to over 101,6 - 304,8 - 609,6 - 609,6 508,0	D mm 101,6	D Tolerand mm 4 up to over up to high 101,8 +102 304,8 +203 609,8 - 508,0 - +203	Up to over up to high low 101,6 +102 0 304,8 +203 -102 609,6 508,0 - +203 -203	D Tolerance classes 4 2 up to over up to high low high 101,6 +102 0 +102 304,8 +203 -102 +102 609,6 - 508,0 - +203 -203 +203 609,6 508,0 - +203 -203 +203	D Tolerance classes 4 2 up to over up to high low high low 101,6 +102 0 +102 0 304,8 +203 -102 +102 0 609,6 - 508,0 +203 -203 +203 -203 609,6 508,0 - +203 -203 +203 -203	D Tolerance classes 4 2 3 up to over up to high low high low high 101,6 +102 0 +102 0 +102 304,8 +203 -102 +102 0 +102 609,6 - 508,0 +203 -203 +203 -203 +203 609,6 508,0 - +203 -203 +203 -203 +203	D Tolerance classes 4 2 3 up to over up to high low high low high low 101,6 +102 0 +102 0 +102 -102 304,8 +203 -102 +102 0 +102 -102 609,6 - 508,0 +203 -203 +203 -203 +203 -203 609,6 508,0 - +203 -203 +203 -203 +203 -203	D Tolerance classes 4 2 3 0 up to over up to high low high low high low high 101,6 +102 0 +102 0 +102 -102 +102 304,8 +203 -102 +102 0 +102 -102 +102 609,6 - 508,0 +203 -203 +203 -203 +203 -203 - 609,6 508,0 - +203 -203 +203 -203 +203 -203 -	D Tolerance classes 4 2 3 0 up to over up to high low high low high low high low 101,6 +102 0 +102 0 +102 -102 +102 -102 304,8 +203 -102 +102 0 +102 -102 +102 -102 609,6 - 508,0 - +203 -203 +203 -203 +203 -203	D Tolerance classes 4 2 3 0 00 up to over up to high low high low high low high low high 101,6 +102 0 +102 0 +102 -102 +102 -102 +102 304,8 +203 -102 +102 0 +102 -102 +102 -102 +102 609,6 - 508,0 - +203 -203 +203 -203 +203 -203

Tapered bore bearings Taper 1:12

Deviations μ m

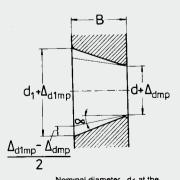
Table 5.29

d mm		Normal tolerance class,P6 △dmp Vdp ¹)			∆d1mp	Tolerance class P5 $\Delta d1mp^{-\Delta}dmp$ Δdmp				∆d1mp ⁻ ∆dmp		
over	up to	high	low	max.	high	low	high	low	max.	high	low	
18	30	+21	0	13	+21	0	+13	0	13	+13	0	
30	50	+25	0	15	+25	0	+16	0	15	+16	0	
50	80	+30	0	19	+30	0	+19	0	19	+19	0	
80	120	+35	0	25	+35	0	+22	0	22	+22	0	
120	180	+40	Ō	31	+40	0	+25	0	25	+25	0	
180	250	+46	ō	38	+46	0	+29	0	29	+29	0	
250	315	+52	0	44	+52	0	+32	0	32	+32	0	
315	400	+57	ō	50	+57	0	+36	0	36	+36	0	
400	500	+63	Ö	56	+63	0	+40	0	-	+40	0	
500	630	+70	0	_	+70	0	+44	0	_	+44	0	
630	800	+80	ŏ	_	+80	0	+50	0	_	+50	0	
800	1 000	+90	ō.	-	+90	Ö	+56	Ó	_	+56	0	
1 000	1 250	+105	0	_	+105	0	+66	0	_	+66	0	
1 250	1 600	+125	ŏ	-	+125	ō	+78	ō	_	+78	o .	
1 600	2 000	+150	ŏ	_	+150	ŏ	+92	ō		+92	Ö	


¹⁾ Applies in all single radial planes of the bore.

Taper 1:30

Table 5.30


Deviati	ons μm				Table 5.3		
nm		Normal ∆dmp	tolerance	vdp 1)	∆d1mp	∆dmp	
over	up to	high	low	max.	high	low	
30	120	+20	0	25	+40	0	
120	180	+25	0	31	+50	0	
180	250	+30	0	38	+55	0	
250	315	+35	0	44	+60	0	
315	400	+40	0	50	+65	0	
100	500	+45	0	56	+75	0	
500	630	+50	0	63	+85	0	
630	800	+75	0	-	+100	0	
300	1 000	+100	0	-	+100	0	
1 000	1 250	+125	0	_	+115	0	
1 250	1 600	+160	0	-	+125	0	
1 600	2 000	+200	0	_	+150	0	

1) Applies in all singular planes.

Tapered bore Half angle of taper, ∝

 $\alpha = 2^{\circ}23^{\circ}9,4^{\circ} \text{ (taper 1:12)}$ \[
 \pi = 0°57'17,4" (taper 1:30)
 \]

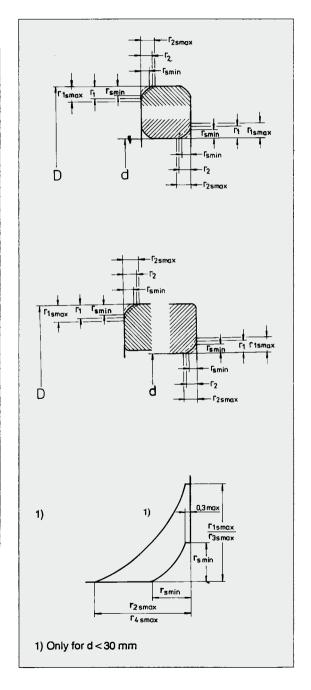
Nominal diameter, d₁ at the theoretical large end of bore

 $d_1 = d + \frac{1}{12}B$ (taper 1:12)

 $d_1 = d + \frac{1}{30}B$ (taper 1:30)

Mounting chamfer dimension tolerances

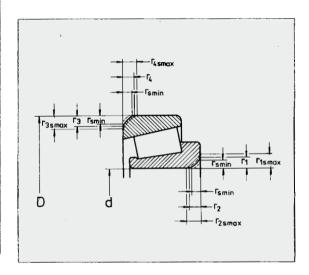
r₁,r₃ – chamfer dimension in radial direction, r₂,r₄ – chamfer dimension in axial direction,


rs min – general symbol for minimum limit of r1, r2, r3, r4, r1s max r3s max – maximum dimension in radial direction, r2s max, r4s max – maximum dimension in axial direction.

Mounting chamfer dimension limits for radial and thrust bearings

Values in mm

Table 5.37


Values	in mm				l able 5.37
			Radial bearings	•	Thrust bearings
rs min	d		「1s:「3s	r ₂₈ ,r ₄₈	^{[18,[28]}
	очег	up to	max.	max.	max.
0,1	-	-	0,2	0,4	0,2
0,15	-	-	0,3	0,6	0,3
0,2	-	-	0,5	0,8	0,5
0,3	- 40	40 	0,6 0,8	1	0,8 0,8
0,6	- 40	40 -	1 1,3	2	1,5 1,5
1	- 50	50	1,5 1,9	3 3	2,2 2,2
1,1	120	120 -	2 2,5	3,5 4	2,7 2,7
1,5	_ 120	120 -	2,3 3	4 5	3,5 3,5
2	220 80	80 220	3 3,8 3,5	4,5 6 5	4 4 4
2,1	- - 280	100 280 -	3,8 4 4,5	6 6,5 7	4,5 4,5 4,5
2,5	100 280	280 -	4,5 5	6 7	-
3	- 280	280	5 5,5	8 8	5,5 5,5
4	-	-	6,5	9	6,5
5	-	-	8	10	8
6	-	-	10	13	10
7,5	-	-	12,5	17	12,5
9,5	-	-	15	19	15
12	-	-	18	24	18
15	-	-	21	30	21
19	-	_	25	38	25

Mounting chamfer dimension limits for tapered roller bearings

Value	s in mm				Table 5.38
r ₈ min.	d,D		^{[18,[38]}	r ₂₈ ,r ₄₈	
	high	low	max.	max.	
0,3	- 40	40 -	0,7 0,9	1,4 1,6	
0,6	- 40	40 	1,1 1,3	1,7 2	
1	- 50	50 	1,6 1,9	2,5 3	
1,5	120 250	120 250 -	2,3 2,8 3,5	3 3,5 4	
2	120 250 250	120 250 - -	2,8 3,5 4 4,5	4 4,5 5 6	
2,5	120	120 250	3,5 4	5 5,5	
3	120 250 400	120 250 400 -	4 4,5 5 5,5	5,5 6,5 7 7,5	
4	120 250 400	120 250 400	5 5,5 6 6,5	7 7,5 8 8,5	
5	- 180	180	6,5 7,5	8 9	
6	- 180	180	7,5 9	10 11	

Mounting chamfer dimension limits for tapered roller bearings (inch-metric sizes)

Values in mm				Table 5.39				
Minimum values	Inner ring Nominal bore diameter		al bore values		Outer ring Maximum Nominal outer values diameter			
s min	d		r1s max.	F2s max.	D		r3s max.	148 max.
	over	up to			over	up to		
See bearing tables	_ 50,8	50,8 101,6	rs min+0,4 rs min+0,5	rs min+0,9 rs min+1,3	_ 101,6	101,6 168,3	rs min+0,6 rs min+0,6	rs min+1,1 rs min+1,2
	101,6	254	rs min+0,6	rs min+1,8	168,3 266,7	266,7 355,6	rs min+0,8 rs min+1,7	rs min+1,4 rs min+1,7
1 1,5	254 254	-	1,9 3,5	3 4	355,6 355,6	-	1,9 3,5	3 4
2,5 3	254 254	Ξ	4,5 5,5	6 7,5	355,6 355,6		4,5 5,5	6 7,5
3,3 3,5	254 254	-	6,5 6,5	9 9	355,6 355,6	-	6,5 6,5	9
6,4 8,5	254 254	Ξ	12,5 15	17 19	355,6 355,6	_	12,5 15	17 19
9,7 19	254 254	_	15 25	19 38	355,6 355,6	_	15 25	19 38

6. Bearing materials

Due to various operating conditions and intricate aspects of deterioration phenomena, direct connections between mechanical characteristics and materials used for bearing manufacturing have been ascertained. Experimental studies proved that the following characteristics have to be considered, when appreciating the quality of bearing steels: rating life and contact fatigue loading, hardness at environment temperature and high temperatures, coefficient of expansion, tenacity, corrosion resistance and metallurgical conversion characteristics.

In case of normal applications and operating conditions, only the first two characteristics are of importance, the other being of importance only in case of bearings used for special applications.

Material behavior when being loaded at fatigue contact is difficult to be estimated due to the complexity of the factors involved while hardness can be estimated by classic methods.

These led to the selection of some steels, which are able to satisfy the main demands of normal and special operating conditions. The steels that meet the requirements for rings and rolling elements manufacturing are the following:

Chrome-alloy bearing steels

Steels with high carbon content (1%) and with chrome 1,5% have been chosen for bearing rings and rolling elements. Table 6.1 shows the chemical content of bearing steels used in Romania and also in Germany, U.S.A., Japan.

Case-hardening steels

Although case-hardening steels are not usually selected for bearing manufacturing, for certain applications they can be successfully used.

These steels are generally recommended for large-sized bearings and where bearings are operated under shock loads and vibrations.

Bearings manufactured of case-hardening steels are less liable to casual failure due to the ductile and soft core of these steels.

Table 6.2 shows the chemical content of the case-hardening bearing steels used in Romania and also in Germany, U.S.A., Japan.

Chemical content of bearing steels

Table 6.1

Country	Symbol	С	Si	Mn	P	S	Cr	Ni	Mo
		%							
Romania	Rul 1V	0,95-1,10	0,17-0,37	0,20-0,45	≤0,027	≤0,020	1,30-1,65	≤0,30	≤0,08
	Rul 2V	0,95-1,10	0,40-0,65	0,90-1,20	≤0,027	≤0,020	1,30-1,65	≤0,30	≤0,08
	Rul 3V	0,95–1,10	0,20-0,35	1,05-1,35	≤0,027	≤0,020	1,10–1,50	≤0,30	0,45-0,60
Germany	105Cr4	1,00-1,10	0,15-0,35	0,25-0,40	≤0,030	≤0,025	0,90-1,15	_	-
	100Cr6	0,90-1,05	0,15-0,35	0,25-0,40	≤0,025	≤0,025	1,40-1,65	-	~
	100CrMn6	0,90–1,05	0,50-0,70	1,00-1,20	≤0,025	≤0,020	1,40-1,65	-	-
USA	E51100	0,98-1,10	0,20-0,35	0,25-0,45	≤0,025	≤0,025	0,90-1,15	≤0,25	≤0,08
	E52100	0,98-1,10	0,20-0,35	0,25-0,45	≤0,025	≤0,025	1,30-1,60	≤0,25	≤0,08
	485Gr.4	0,98-1,10	0,20-0,35	1,05-1,35	≤0,025	≤0,025	1,90-1,40	≤0,25	0,45-0,65
Japan	SUJ 2	0,95-1,10	0,15-0,35	≤0,50	≤0,025	≤0,025	1,30-1,60	≤0,25	≤0,08
	SUJ 3	0,95-1,10	0,40-0,70	0,90-1,15	≤0,025	≤0,025	0,90-1,20	≤0,25	≤0,08

Chemical content of the case-hardening bearing steels

Table 6.2

Country	Symbol	С	Si	Mn	P	S	Cr	Ni	Мо
		%							
Romania	20MoCrNi06V	0,17-0,23	0,20-0,30	0,60-0,90	≤0,025	≤0,025	0,35-0,60	0,35-0,75	0,20-0,30
	13CrNi35V	0,09-0,13	0,17-0,37	0,30-0,60	≤0,025	≤0,025	1,25-1,65	3,25-3,75	_
	21MoMnCr12	0,18-0,24	0,17-0,37	0,80-1,20	≤0,025	≤0,025	1,00-1,40		0,20-0,30
	15Cr08Mo	0,12-0,18	0,17-0,37	0,40-0,70	≤0,025	≤0,025	0,70-1,00	-	0,08-0,15
Germany	16MnCr5	0,14-0,19	0,15-0,35	1,00-1,30	≤0,035	≤0,035	_	0,80-1,00	_
	20MnCr5	0,17-0,22	0,15-0,35	1,10-1,40	≤0,035	≤0.035	_	1,00-1,30	_
	15CrNi6	0,12-0,17	0,15-0,35	0,40-0,60	≤0,035	≤0,035	1,40-1,70	1,40-1,70	-
	18CrNi8	0,15-0,20	0,15-0,35	0,40-0,60	≤0,035	≤0,035	1,80-2,10	1,80-2,10	-
USA	5120H	0,17-0,23	0,15-0,30	0,60-1,00	≤0,025	≤0,025	_	0,60-1,00	_
	4118H	0,17-0,23	0,15-0,30	0,60-1,00	≤0,025	≤0,025	_	0,30-0,70	0.08-0.15
	8620H	0,17-0,23	0,15-0,30	0,60-0,95	≤0,025	≤0,025	0,35-0,75	0,35-0,65	0,15-0,25
	4320H	0,17-0,23	0,15-0,30	0,40-0,70	≤0,025	≤0,025	1,55-2,00	0,35-0,65	0,20-0,30
Japan	SCr420H	0,17-0,23	0,15-0,35	0,55-0,90	≤0,030	≤0,030	_	0,85-1,25	_
p	SCM415H	0,12-0,18	0,15-0,35	0,55-0,90	≤0,030	≤0,030	_	0,85-1,25	0,15-0,35
	SCM420H	0,17-0,23	0,15-0,35	0,55-0,90	≤0,030	≤0,030	_	0,85-1,25	0,15-0,35
	SNCM220H	0,17-0,23	0,15-0,35	0,60-0,95	≤0,030	≤0,030	0,35-0,65	0,35-0,65	0,15-0,30
	SNCM420H	0,17-0,23	0,15-0,35	0,40-0,70	≤0,030	≤0,030	1.55-2.00	0,35-0,65	0,15-0,30

Heat treatment steels

For large sized-bearings of special design, with internal or external gearing, alloyed heat treatment steels are used.

Table 6.3 shows the chemical content of heat treatment bearing steels.

Bearing cages

Bearing cages are of great importance for bearing design.

The main purpose of the cage is to prevent immediate contact between two neighboring rolling elements and to guide them on raceways. Where bearings are of separable design, the cage also serves to retain the rolling elements when one bearing ring is removed during mounting and dismounting.

Considering the cage manufacturing technologies, they can be classified as follows:

- Pressed cages of steel sheet, low carbon content, for extra- deep drawing.
- Polyamide cages are used for some small and mediumsized bearings due to the following properties:
 - low density
 - high elasticity
 - low wear at sliding movement
 - low inertia moment

Heat-stabilized glass fibre reinforced polyamide 6.6 is the mostly used material. Maximum operating temperature for these cages must be of $+120^{\circ}$ C.

- Textolite cages, for high accuracy bearings, high speed operating.
- Machined cage of carbon steel, nodular cast iron and brass. These materials are generally used for cages of large-sized bearings.

Chemical content of the heat treatment bearing steels

Table 6.3

Country	Symbol	C %	Si	Mn	Р	S	Cr	Ni	Мо
Romania	41MoCr11	0,38-0,45	0,15-0,35	0,40-0,80	≤0,025	≤0,025	0,90-1,30	-	0,15-0,30
Germany	42CrMo4	0,42	0,25	0,65	≤0,035	≤0,035	1,05	-	0,20
USA	4140 (4142)	0,38-0,43	0,20-0,35	0,75-1,00	≤0,035	≤0,035	0,80–1,10	-	0,15-0,25
Japan	SCM4(H)	0,37-0,44	0,15-0,35	0,55-0,90	≤0,030	≤0,030	0,85-1,25	-	0,15–0,35

7. Bearing applications

Locating bearings and non-locating bearings

Radial and axial loads in bearing units can be transmitted by locating and non-locating bearings.

A locating bearing is generally used for medium- and large-sized shafts that can reach high temperatures during operation. It has to support radially the shaft assembly and to locate it axially in both directions.

A non-locating bearing supports the shaft assembly only radially it also allows axial displacement in relation to the housing to take place so that additional axial loading is avoided.

Axial displacement can take place either in the housing bore seating or in the bearing itself.

In case the shaft is supported by more than two bearings, only one of them will be a locating bearing and it will be the one with the lightest radial load.

In case of small-sized shafts, two non-locating bearings with limited displacement can be used. Each of them can accommodate axial loads in a single direction, having thus mutual location.

Fig. 7.1 shows a few of the most representative applications of locating and non-locating bearings, as follows:

a) The locating bearing is a single row deep groove ball bearing and the non-locating one is a cylindrical roller bearing with both rings tightly fitted on the shaft and into the housing, respectively.

b) Both bearings are supported by spherical roller bearings. The locating bearing is tightly fitted both on the shaft and into the housing. The non-locating bearing has the outer ring mounted with clearance into the housing and thus allows axial displacement in both directions.

c) The locating bearing consists of two tapered roller bearings, pair mounted and the non-locating bearing consists of one cylindrical roller bearing, NU type, tightly fitted into the housing bore.

d) The locating bearing consists of a cylindrical roller bearing, NUP type and the non-locating bearing consists of a cylindrical roller bearing, NU type.

e) The locating bearing consists of a cylindrical roller

bearing, NU type which takes over radial loads and of a four-point contact ball bearing (unloaded on the outside). The non-locating bearing consists of a cylindrical roller bearing, NU type.

f) The locating bearing consists of a needle roller bearing, NA type which takes over radial loads and of a single row deep groove ball bearing (unloaded on the outside) which takes over axial loads in both directions. The non-locating bearing consists of a needle roller bearing, NA type.

g) The shafts bearings can also be X-type arrangement of two tapered roller bearings which can be considered mutual located bearing.

Recommendation for bearing fit selection

Three main criteria have to be considered when selecting the bearing fit:

- 1. Firm location and uniform support of rings
- 2. Ease of mounting and dismounting
- 3. Axial displacement of non-locating bearing

The most common location is assured by a tight fit.

A high tightening is recommended for roller bearings and large-sized bearings in comparison to ball bearings of the same size.

In case of a tight fit, the inner ring is supported by the entire shaft contact surface, thus bearing is used at full load carrying capacity. When selecting the fit, one has to consider the difference of temperature which may occur between ring and shaft or between ring and housing.

The tolerance classes given in tables 7.1 and 7.3 are available for bearing fits which do not exceed +120 °C during operation.

As a general rule, the selection of the tolerance class "H" is recommended for bearings of separable design and tolerance class "J" for bearings of non-separable design.

When selecting a fit, the load of the rotating ring has to be considered, namely:

- If the inner ring rotates and the load is stationary, the outer ring should be mounted with clearance fit.
- If the inner ring rotates and the load is a rotating one, the outer ring should be mounted with tight fit.
- If the inner ring rotates and the direction of load is not determinated, both rings should be mounted with tight fit.

Fig.7.2

Bearings application

Tolerance classes for shafts

Table 7.1

Operating conditions	Examples	Shaft diameter (mn	1)		
		Ball bearings	Needle and tapered roller bearings	Tolerance class symbol	
Radial bearings with c					
Easy axial displace- ment of inner ring on shaft desirable	Wheels on non- rotating shafts (free wheels)	All diameters		g6(f6)	
Axial displacement of inner ring on shaft not necessary	Tension pullyes, sheaves			h6	
Rotating inner ring loa	d				
Light and variable loads (P < 0,06C)	Conveyers lightly loaded mechanisms, bearings	18100 > 100140	≤40 >40100	ј6 к6	
Normal and heavy loads (P > 0,06C)	General mechanical engineering, electric motors, turbines, pups, gearboxes, woodworking machines	≤18 >18100 >100140 >140200 >200280	≤40 >40100 >100140 >140200 >200400	j5 k5(k6) m5(m6) m6 n6 p6 r6	
Heavy loads and shock loads, ardous working conditions (P>0,12C)	Heavy duty railway vehicles axle bearings, traction motors, rolling mills	- -	> 50140 > 140200 > 200	n6 p6 r6	
High running accuracy, light loads (P < 0,06C)	Machine tools	≤18 >18100 >100200	 ≤40 >40140 >140200	h5 j5 k5 m5	
Axial loads					
	All kind of bearing application	≤250 > 250	≤250 >250	j6 is6	

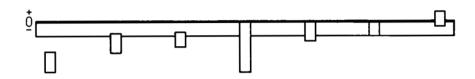


Table 7.2

Shaft Diame		Bearin Bore	•	Deviation Tolerance		t diamete	er, resulta	ent fits									
ď.		diame		f6		g 6		g 5		h8		h6		h5		j5	
nomii	nal	∆dmp			ons (shaf												
over	up to	low	high	b) Tighterc) Tighter	ning/Theo ning/Prob	oretical c able clea	learance arance										
mm		μm															
1	3	-8	0	a) -6 b) +2 c) 0	-12 -12 -10	-2 +6 +4	-8 -8 -6	-2 +6 +5	-6 -6 -5	0 +8 +6	-14 -14 -12	0 +8 +6	-6 -6 -4	0 +8 +7	-4 -4 -3	+2 +10 +9	-2 -2 -1
3	6	-8	0	-10 -2 -4	-18 -18 -16	-4 +4 +2	-12 -12 -10	-4 +4 +3	-9 -9 -8	0 +8 +5	-18 -18 -15	0 +8 +6	-8 -8 -6	0 +8 +7	-5 -5 -4	+3 +11 +10	-2 -2 -1
6	10	-8	0	-13 -5 -7	-22 -22 -20	~5 +3 +1	-14 -14 -12	-5 +3 +1	-11 -11 -9	0 +8 +5	-22 -22 -19	0 +8 +6	-9 -9 -7	0 +8 +6	-6 -6 -4	+4 +12 +10	-2 -2 0
10	18	-8	0	-16 -8 -10	-27 -27 -25	-6 +2 0	-17 -17 -15	-6 +2 0	-14 -14 -12	0 +8 +5	-27 -27 -24	0 +8 +6	-11 -11 -9	0 +8 +6	-8 -8 -6	+5 +13 +11	-3 -3 -1
18	30	-10	0	-20 -10 -13	-33 -33 -30	-7 +3 0	-20 -20 -17	-7 +3 +1	-16 -16 14	0 +10 +6	-33 -33 -29	0 +10 +7	-13 -13 -10	0 +10 +8	-9 -9 -7	+5 +15 +13	-4 -4 -2
30	50	-12	0	-25 -13 · -17	-41 -41 -37	-9 +3 -1	-25 -25 -21	-9 +3 0	-20 -20 -17	0 +12 +7	-39 -39 -34	0 +12 +8	-16 -16 -12	0 +12 +9	-11 -11 -8	+6 +18 +15	-5 -5 -2
50	80	-15	0	-30 -15 -19	-49 -49 -45	-10 +5 +1	-29 -29 -25	-10 +5 +1	-23 -23 -19	0 +15 +9	-46 -46 -40	0 +15 +11	-19 -19 -15	0 +15 +11	-13 -13 -9	+6 +21 +17	-7 -7 -3
80	120	-20	0	-36 -16 -22	-58 -58 -52	-12 +8 +2	-34 -34 -28	-12 +8 +3	-27 -27 -22	0 +20 +12	-54 -54 -46	0 +20 +14	-22 -22 -16	0 +20 +15	-15 -15 -10	+6 +26 +21	-9 -9 -4
120	180	-25	0	-43 -18 -25	-68 -68 -61	-14 +11 +4	-39 -39 -32	-14 +11 +5	32 32 26	0 +25 +15	63 63 53	0 +25 +18	-25 -25 -18	0 +25 +19	-18 -18 -12	+7 +32 +26	-11 -11 -5
180	250	-30	0	-50 -20 -28	-79 -79 -71	~15 +15 +7	-44 -44 -36	-15 +15 +9	-35 -35 -29	0 +30 +18	-72 -72 -60	0 +30 +22	-29 -29 -21	0 +30 +24	-20 -20 -14	+7 +37 +31	-13 -13 -7
250	315	-35	0	-56 -21 -30	-88 -88 -79	-17 +18 +9	-49 -49 -40	-17 +18 +10	-40 -40 -32	0 +35 +22	-81 -81 -68	0 +35 +26	-32 -32 -23	0 +35 +27	-23 -23 -15	+7 +42 +34	-16 -16 -8
315	400	-40	0	-62 -22 -33	-98 -98 -87	-18 +22 +11	-54 -54 -43	-18 +22 +14	-43 -43 -35	0 +40 +25	-89 -89 -74	0 +40 +29	-36 -36 -25	0 +40 +32	-25 -25 -17	+7 +47 +39	-18 -18 -10
400	500	-45	0	-68 -23 -35	-108 -108 -96	-20 +25 +13	-60 -60 -48	-20 +25 +16	-47 -47 -38	0 +45 +28	-97 -97 -80	0 +45 +33	-40 -40 -28	0 +45 +36	-27 -27 -18	+7 +52 +43	-20 -20 -11

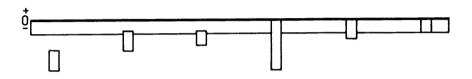


Table 7.2 (continued)

Shaft Diameter	Bearing Bore diameter	Deviations Tolerances		iameter, r	esultant fi	ts							
d	tolerance	f6		g6		g5		h8		h6		h5	
nominal over up to	∆dmp low high	b) Tighteni	ns (shaft d ng/Theore ng/Probab	tical clear	ance ace								
mm	μm												
500 630	-50 0	a) -76 b) -26 c) -39	-120 -120 -107	-22 +28 +15	-66 -66 -53	-22 +28 +18	-50 -50 -40	0 +50 +31	-110 -110 -91	0 +50 +37	-44 -44 -31	0 +50 +40	-28 -28 -18
630 800	-75 0	-80 -5 -22	-130 -130 -113	-24 +51 +34	-74 -74 -57	-24 +51 +39	-56 -56 -44	0 +75 +48	-125 -125 -98	0 +75 +58	-50 -50 -33	0 +75 +63	-32 -32 -20
300 1 000	-100 0	-86 +14 -6	-142 -142 -122	-26 +74 +54	-82 -82 -62	-26 +74 +60	-62 -62 -48	0 +100 +67	-140 -140 -107	0 +100 +80	-56 -56 -36	0 +100 +86	-36 -36 -22
1 000 1 250	-125 0	-98 +27 +3	-164 -164 -140	-28 +97 +73	-94 -94 -70	-28 +97 +80	-70 -70 -53	0 +125 +84	-165 -165 -124	0 +125 +101	-66 -66 -42	0 +125 +108	-42 -42 -25
250 1 600	-160 0	-110 +50 +20	-188 -188 -158	-30 +130 +100	-108 -108 -78	-30 +130 +109	-80 -80 -59	0 +160 +109	-195 -195 -144	0 +160 +130	-78 -78 -48	0 +160 +139	-50 -50 -29
600 2 000	-200 0	-120 +80 +45	-212 -212 -177	-32 +168 +133	-124 -124 -89	-32 +168 +143	-92 -92 -67	0 +200 +138	-230 -230 -168	0 +200 +165	-92 -92 -57	0 +200 +175	-60 -60 -35

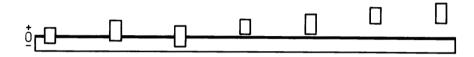


Table 7.2 (continued)

															iable	7.2 (cont	nueuj
Shaft Diame	eter	Bearin Bore diame	•	Deviation Tolerance		t diamet	er, resul	tant fits									
d		tolera	nce	js5		j6		js6		k5		k6		m5		m6	
nomir	al	∆dmp		a) Deviati	ons (shaf	ft diamet	er)										
over	up to	low	high	b) Tighter c) Tighter	ning/Theo ning/Prob	oretical c pable cle	learance arance										
mm		μm															
1	3	-8	0	a) +2 b) +10 c) +9	-2 -2 -1	+4 +12 +10	-2 -2 0	+3 +11 +9	-3 -3 -1	+4 +12 +11	0 0 +1	+6 +14 +12	0 0 +2	+6 +14 +13	+2 +2 +3	+8 +16 +14	+2 +2 +4
3	6	-8	0	+2,5 +10,5 +9	-2,5 -2,5 -1	+6 +14 +12	-2 -2 0	+4 +12 +10	-4 -4 -2	+6 +14 +13	+1 +1 +2	+9 +17 +15	+1 +1 +3	+9 +17 +16	+4 +4 +5	+12 +20 +18	+4 +4 +6
6	10	-8	0	+3 +11 +9	-3 -3 -1	+7 +15 +13	-2 -2 0	+4,5 +12,5 +11	-4,5 -4,5 -3	+7 +15 +13	+1 +1 +3	+10 +18 +16	+1 +1 +3	+12 +20 +18	+6 +6 +8	+15 +23 +21	+6 +6 +8
10	18	-8	0	+4 +12 +10	-4 -4 -2	+8 +16 +14	-3 -3 -1	+5,5 +13,5 +11	-5,5 -5,5 -3	+9 +17 +15	+1 +1 +3	+12 +20 +18	+1 +1 +3	+15 +23 +21	+7 +7 +9	+18 +26 +24	+7 +7 +9
18	30	-10	0	+4,5 +14,5 +12	-4,5 -4,5 -2	+9 +19 +16	-4 -4 -1	+6,5 +16,5 +14	-6,5 -6,5 -4	+11 +21 +19	+2 +2 +4	+15 +25 +22	+2 +2 +5	+17 +27 +25	+8 +8 +10	+21 +31 +28	+8 +8 +11
30	50	-12	0	+5,5 +17,5 +15	-5,5 -5,5 -3	+11 +23 +19	-5 -5 -1	+8 +20 +16	-8 -8 -4	+13 +25 +22	+2 +2 +5	+18 +30 +26	+2 +2 +6	+20 +32 +29	+9 +9 +12	+25 +37 +33	+9 +9 +13
50	80	-15	0	+6,5 +21,5 +18	-6,5 -6,5 -3	+12 +27 +23	-7 -7 -3	+9,5 +24,5 +20	-9,5 -9,5 -5	+15 +30 +26	+2 +2 +6	+21 +36 +32	+2 +2 +6	+24 +39 +35	+11 +11 +15	+30 +45 +41	+11 +11 +15
80	120	-20	0	+7,5 +27,5 +23	-7,5 -7,5 -3	+13 +33 +27	-9 -9 -3	+11 +31 +25	-11 -11 -5	+18 +38 +33	+3 +3 +8	+25 +45 +39	+3 +3 +9	+28 +48 +43	+13 +13 +18	+35 +55 +49	+13 +13 +19
120	180	-25	0	+9 +34 +28	-9 -9 -3	+14 +39 +32	-11 -11 -4	+12,5 +37,5 +31	12,5 12,5 6	+21 +46 +40	+3 +3 +9	+28 +53 +46	+3 +3 +10	+33 +58 +52	+15 +15 +21	+40 +65 +58	+15 +15 +22
180	250	-30	0	+10 +40 +34	-10 -10 -4	+16 +46 +38	-13 -13 -5	+14,5 +44,5 +36	-14,5 -14,5 -6	+24 +54 +48	+4 +4 +10	+33 +63 +55	+4 +4 +12	+37 +67 +61	+17 +17 +23	+46 +76 +68	+17 +17 +25
250	315	-35	0	+11,5 +46,5 +39	-11,5 -11,5 -4	+16 +51 +42	-16 -16 -7	+16 +51 +42	-16 -16 -7	+27 +62 +54	+4 +4 +12	+36 +71 +62	+4 +4 +13	+43 +78 +70	+20 +20 +28	+52 +87 +78	+20 +20 +29
315	400	-40	0	+12,5 +52,5 +44	-12,5 -12,5 -4	+18 +58 +47	-18 -18 -7	+18 +58 +47	-18 -18 -7	+29 +69 +61	+4 +4 +12	+40 +80 +69	+4 +4 +15	+46 +86 +78	+21 +21 +29	+57 +97 +86	+21 +21 +32
400	500	-45	0	+13,5 +58,5 +49	-13,5 -13,5 -4	+20 +65 +53	-20 -20 -8	+20 +65 +53	-20 -20 -8	+32 +77 +68	+5 +5 +14	+45 +90 +78	+5 +5 +17	+50 +95 +86	+23 +23 +32	+63 +108 +96	+23 +23 +35

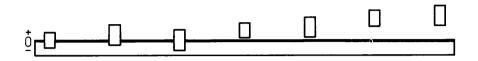
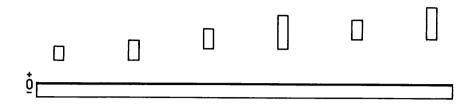



Table 7.2 (continued)

														7.2 (GONL	
Shaft Diameter	Bearing Bore diameter	Deviation Toleranc		ft diamet	er, resul	tant fits									
ı	tolerance	js5		j6		js6		k5		k6		m5		m6	
nominal over up to	∆dmp low high	b) Tighte	ning/The	ift diamete oretical c bable cle	learance										
nm	μm														
600 630	-50 0	a) +14 b) +64 c) +54	-14 -14 -4	+22 +72 +59	-22 -22 -9	+22 +72 +59	-22 -22 -9	+29 +78 +68	0 0 +10	+44 +94 +81	0 0 +13	+55 +104 +94	+26 +26 +36	+70 +120 +107	+26 +26 +39
30 800	-75 O	+16 +91 +79	-16 -16 -4	+25 +100 +83	-25 -25 -8	+25 +100 +83	-25 -25 -8	+32 +107 +95	0 0 +12	+50 +125 +108	0 0 +17	+62 +137 +125	+30 +30 +42	+80 +155 +138	+30 +30 +47
00 1 000	-100 0	+18 +118 +104	-18 -18 -4	+28 +128 +108	-28 -28 -8	+28 +128 +108	+28 -28 -8	+36 +136 +122	0 0 +14	+56 +156 +136	0 0 +20	+70 +170 +156	+34 +34 +48	+90 +190 +170	+34 +34 +54
000 1 250	-125 0	+21 +146 +129	-21 -21 -4	+33 +158 +134	-33 -33 -9	+33 +158 +134	-33 -33 -9	+42 +167 +150	0 0 +17	+66 +191 +167	0 0 +24	+82 +207 +190	+40 +40 +57	+106 +231 +207	+40 +40 +64
250 1 600	-160 0	+25 +185 +164	-25 -25 -4	+39 +199 +169	-39 -39 -9	+39 +199 +169	-39 -39 -9	+50 +210 +189	0 0 +21	+78 +238 +208	0 0 +30	+98 +258 +237	+48 +48 +69	+126 +286 +256	+48 +48 +78
600 2000	-200 0	+30 +230 +205	-30 -30 -5	+46 +246 +211	-46 -46 -11	+46 +246 +211	-46 -46 -11	+60 +260 +235	0 0 +25	+92 +292 +257	0 0 +35	+118 +318 +293	+58 +58 +83	+150 +350 +315	+58 +58 +93

Tabelul 7.2 (continued)

Shaft Diam		Bearin Bore diame	•	Deviation Tolerance	s of shaft s	diameter,	resultant 1	lits							
d		tolera		n5		n6		p6		p 7		r6		r7	
nomi	nal	∆dmp		a) Deviati	ons (shaft	diameter)									
over	up to	low	high	b) Tighter c) Tighter	ning/Theor ning/Proba	etical clea ble cleara	rance nce								
mm		μm												,	
1	3	-8	0	a) +8 b) +16 c) +15	+4 +4 +5	+10 +18 +16	+4 +4 +6	+12 +20 +18	+6 +6 +8	+16 +24 +22	+6 +6 +8	+16 +24 +22	+10 +10 +12	+20 +28 +26	+10 +10 +12
3	6	-8	0	+13 +21 +20	+8 +8 +9	+16 +24 +22	+8 +8 +10	+20 +28 +26	+12 +12 +14	+24 +32 +30	+12 +12 +14	+23 +31 +29	+15 +15 +17	+27 +35 +33	+15 +15 +17
6	10	-8	0	+16 +24 +22	+10 +10 +12	+19 +27 +25	+10 +10 +12	+24 +32 +30	+15 +15 +17	+30 +38 +35	+15 +15 +18	+28 +36 +34	+19 +19 +21	+34 +42 +39	+19 +19 +22
10	18	-8	0	+20 +28 +26	+12 +12 +14	+23 +31 +29	+12 +12 +14	+29 +37 +35	+18 +18 +20	+36 +44 +41	+18 +18 +21	+34 +42 +40	+23 +23 +25	+41 +49 +46	+23 +23 +26
18	30	-10	0	+24 +34 +32	+15 +15 +17	+28 +38 +35	+15 +15 +18	+35 +45 +42	+22 +22 +25	+43 +53 +50	+22 +22 +25	+41 +51 +48	+28 +28 +31	+49 +59 +56	+28 +28 +31
30	50	-12	0	+28 +40 +37	+17 +17 +20	+33 +45 +41	+17 +17 +21	+42 +54 +50	+26 +26 +30	+51 +63 +59	+26 +26 +30	+50 +62 +58	+34 +34 +38	+59 +71 +67	+34 +34 +38
50	65	-15	0	+33 +48 +44	+20 +20 +24	+39 +54 +50	+20 +20 +24	+51 +66 +62	+32 +32 +36	+62 +77 +72	+32 +32 +37	+60 +75 +71	+41 +41 +45	+71 +86 +81	+41 +41 +46
65	80	-15	0	+33 +48 +44	+20 +20 +24	+39 +54 +50	+20 +20 +24	+51 +66 +62	+32 +32 +36	+62 +77 +72	+32 +32 +37	+62 +77 +73	+43 +43 +47	+73 +88 +83	+43 +43 +48
80	100	-20	0	+38 +58 +53	+23 +23 +28	+45 +65 +59	+23 +23 +29	+59 +79 +73	+37 +37 +43	+72 +92 +85	+37 +37 +44	+73 +93 +87	+51 +51 +57	+86 +106 +99	+51 +51 +58
100	120	-20	0	+38 +58 +53	+23 +23 +28	+45 +65 +59	+23 +23 +29	+59 +79 +73	+37 +37 +43	+72 +92 +85	+37 +37 +44	+76 +96 +90	+54 +54 +60	+89 +109 +102	+54 +54 +61
120	140	-25	0	+45 +70 +64	+27 +27 +33	+52 +77 +70	+27 +27 +34	+68 +93 +86	+43 +43 +50	+83 +108 +100	+43 +43 +51	+88 +113 +106	+63 +63 +70	+103 +128 +120	+63 +63 +71
140	160	-25	0	+45 +70 +64	+27 +27 +33	+52 +77 +70	+27 +27 +34	+68 +93 +86	+43 +43 +50	+83 +108 +100	+43 +43 +51	+90 +115 +108	+65 +65 +72	+105 +130 +122	+65 +65 +73
160	180	-25	0	+45 +70 +64	+27 +27 +33	+52 +77 +70	+27 +27 +34	+68 +93 +86	+43 +43 +50	+83 +108 +100	+43 +43 +51	+93 +118 +111	+68 +68 +75	+108 +133 +125	+68 +68 +76

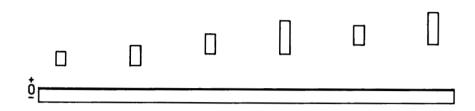


Table 7.2 (continued)

												ble 7.2 (cc	
Shaft Diameter	Bearing Bore	Deviations Tolerance	s of shaft o	diameter, r	resultant (lits							
1	diameter tolerance ∆dmp	n5		n6		p 6		p 7		г6		r7	
nominal over up to	low hig	b) Tighter	ons (shaft on ning/Theore ning/Proba	etical clear	ance								
mm	μm	o) rigities	mig/i loba										
	,												
180 200	-30 0	a) +51 b) +81 c) +75	+31 +31 +37	+60 +90 +82	+31 +31 +39	+79 +109 +101	+50 +50 +58	+96 +126 +116	+50 +50 +60	+106 +136 +128	+77 +77 +85	+123 +153 +143	+77 +77 +87
200 225	-30 0	+51 +81 +75	+31 +31 +37	+60 +90 +82	+31 +31 +39	+79 +109 +101	+50 +50 +58	+96 +126 +116	+50 +50 +60	+109 +139 +131	+80 +80 +88	+126 +156 +146	+80 +80 +90
225 250	-30 0	+51 +81 +75	+31 +31 +37	+60 +90 +82	+31 +31 +39	+79 +109 +101	+50 +50 +58	+96 +126 +116	+50 +50 +60	+113 +143 +135	+84 +84 +92	+130 +160 +150	+84 +84 +94
250 280	-35 0	+57 +92 +84	+34 +34 +42	+66 +101 +92	+34 +34 +43	+88 +123 +114	+56 +56 +65	+108 +143 +131	+56 +56 +68	+126 +161 +152	+94 +94 +103	+146 +181 +169	+94 +94 +106
280 315	-35 0	+57 +92 +84	+34 +34 +42	+66 +101 +92	+34 +34 +43	+88 +123 +114	+56 +56 +65	+108 +143 +131	+56 +56 +68	+130 +165 +156	+98 +98 +107	+150 +185 +173	+98 +98 +110
315 355	-40 O	+62 +102 +94	+37 +37 +45	+73 +113 +102	+37 +37 +48	+98 +138 +127	+62 +62 +73	+119 +159 +146	+62 +62 +75	+144 +184 +173	+108 +108 +119	+165 +205 +192	+108 +108 +121
355 400	- 40 0	+62 +102 +94	+37 +37 +45	+73 +113 +102	+37 +37 +48	+98 +138 +127	+62 +62 +73	+119 +159 +146	+62 +62 +75	+150 +190 +179	+114 +114 +125	+171 +211 +198	+114 +114 +127
400 450	-45 O	+67 +112 +103	+40 +40 +49	+80 +125 +113	+40 +40 +52	+108 +153 +141	+68 +68 +80	+131 +176 +161	+68 +68 +83	+166 +211 +199	+126 +126 +138	+189 +234 +219	+126 +126 +141
450 500	- 45 0	+67 +112 +103	+40 +40 +49	+80 +125 +113	+40 +40 +52	+108 +153 +141	+68 +68 +80	+131 +176 +161	+68 +68 +83	+172 +217 +205	+132 +132 +144	+195 +240 +225	+132 +132 +147
500 560	-50 0	+73 +122 +112	+44 +44 +54	+88 +138 +125	+44 +44 +57	+122 +172 +159	+78 +78 +91	+148 +198 +182	+78 +78 +94	+194 +244 +231	+150 +150 +163	+220 +270 +254	+150 +150 +166
560 630	- 50 0	+73 +122 +112	+44 +44 +54	+88 +138 +125	+44 +44 +57	+122 +172 +159	+78 +78 +91	+148 +198 +182	+78 +78 +94	+199 +249 +236	+155 +155 +168	+225 +275 +259	+155 +155 +171
830 710	- 7 5 0	+82 +157 +145	+50 +50 +62	+100 +175 +158	+50 +50 +67	+138 +213 +196	+88 +88 +105	+168 +243 +221	+88 +88 +110	+225 +300 +283	+175 +175 +192	+255 +330 +308	+175 +175 +197
710 800	-75 0	+82 +157 +145	+50 +50 +62	+100 +175 +158	+50 +50 +67	+138 +213 +196	+88 +88 +105	+168 +243 +221	+88 +88 +110	+235 +310 +293	+185 +185 +202	+265 +340 +318	+185 +185 +207

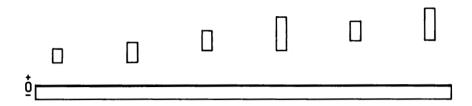
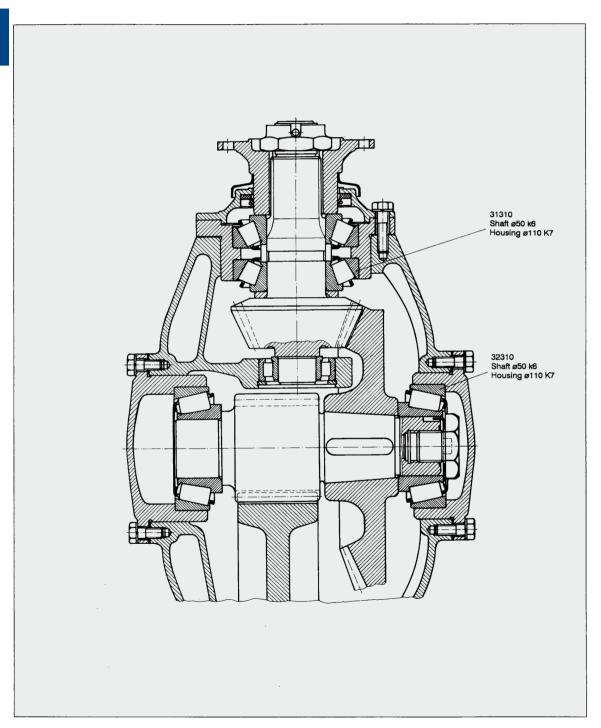



Table 7.2 (continued)

											DIE 7.2 (C	
Shaft Diameter	Bearing Bore diameter	Deviations Tolerances	of shaft diamet	er, resultant	fits							
d	tolerance	n5	n6		р6		p 7		r6		r7	
nominal over up to	∆dmp low high	b) Tighteni	ns (shaft diamet ng/Theoretical c ng/Probable cle	learance								
mm	μm											
800 900	-100 0	a) +92 b) +192 c) +178	+56 +11 +56 +21 +70 +18	2 +56	+156 +256 +236	+100 +100 +120	+190 +290 +263	+100 +100 +127	+266 +366 +346	+210 +210 +230	+300 +400 +373	+210 +210 +237
900 1 000	-100 O	+92 +192 +178	+56 +11 +56 +21 +70 +18	2 +56	+156 +256 +236	+100 +100 +120	+190 +290 +263	+100 +100 +127	+276 +376 +356	+220 +220 +240	+310 +410 +383	+220 +220 +247
1 000 1 120	-125 0	+108 +233 +216	+66 +13 +66 +25 +83 +23	7 +66	+186 +311 +287	+120 +120 +144	+225 +350 +317	+120 +120 +153	+326 +441 +417	+250 +250 +274	+355 +480 +447	+250 +250 +283
1 120 1 250	-125 0	+108 +233 +216	+66 +13 +66 +25 +83 +23	7 +66	+186 +311 +287	+120 +120 +144	+225 +350 +317	+120 +120 +153	+326 +451 +427	+260 +260 +284	+365 +490 +457	+260 +260 +293
1 250 1 400	-160 0	+128 +288 +267	+78 +15 +78 +31 +99 +28	6 +78	+218 +378 +348	+140 +140 +170	+265 +425 +385	+140 +140 +180	+378 +538 +508	+300 +300 +330	+425 +585 +545	+300 +300 +340
1 400 1 600	-160 0	+128 +288 +267	+78 +15 +78 +31 +99 +28	6 +78	+218 +378 +348	+140 +140 +170	+265 +425 +385	+140 +140 +180	+408 +568 +538	+330 +330 +360	+455 +615 +575	+330 +330 +370
1 600 1 800	-200 0	+152 +352 +327	+92 +18 +92 +38 +117 +34	4 +92	+262 +462 +427	+170 +170 +205	+320 +520 +470	+170 +170 +220	+462 +662 +627	+370 +370 +405	+520 +720 +670	+370 +370 +420
1 800 2 000	-200 0	+152 +352 +327	+92 +18 +92 +38 +117 +34	4 +92	+262 +462 +427	+170 +170 +205	+320 +520 +470	+170 +170 +220	+492 +692 +657	+400 +400 +435	+550 +750 +700	+400 +400 +450

Bearings application Examples

Bearings application
Tolerance classes for housing bores
Radial bearings

Solid housing

Table 7.3

Operating conditions	Examples	Tolerance class symbol	Outer ring displacement
Rotating outer ring load			
Heavy loads on bearings in thin-walled housings, heavy shock lads (P > 0,12C)	Roller bearing wheel hubs, connecting rod bearing	P7	Outer ring cannot be displaced
Normal and heavy loads (P > 0,06C)	Ball bearing wheel hubs, connecting rod bearings, crane traveling wheels	N7	
Light and variable loads (P≤0,06C)	Conveyer rollers, rope sheaves, belt tension pulleys	M7	
Direction of load indeterminate			
Heavy shock loads	Traction motors	M7	Outer ring cannot be displaced
Normal and heavy loads (P > 0,06 C). Outer ring displacement is not necessary	Electric motors, pumps crankshaft main bearings	K7	

Split or solid housings

Table 7.3 (continued)

Operating conditions	Examples	Tolerance class symbol	Outer ring displacement
Direction of load indeterminate			
Light and normal loads. Desirable outer ring displacement (P≤0,12C)	Medium-sized electric motors, pumps, crankshaft main bearings	J7	The outer ring can be displaced
Stationary outer ring load			
Loads of all kinds	Genaral mechanical engineering, railway axleboxes	H7	The outer ring can be easily displaced
Light and normal loads with simple conditions (P≤0,12C)		H8	
Heat conduction through shaft	Drying cylinders, large electrical machines with spherical roller bearings	G7	

Split housings

				Table 7.3 (continued)
Operating conditions	Examples		Tolerance class symbol	Outer ring displacement
High accuracy rotation, quiet ru	unning			
High shiftness at variable loads	Main shafts for machine-tools with roller bearings	D≤125 D>125	M6 N6	The outer ring cannot be displaced
Light loads, indeterminate load direction	Shaft operating surface for grinding machines with ball bearings, free bearing for high speed superchargers		К6	The outer ring cannot be displaced
Desirable outer ring displacement	Shaft operating surface for grinding machines with ball bearings, free bearing for high speed superchargers		J6	The outer ring can be displaced
Quiet running	Small-sized electrical machines		H6	The outer ring can be easily displaced

Bearings application Housing fits

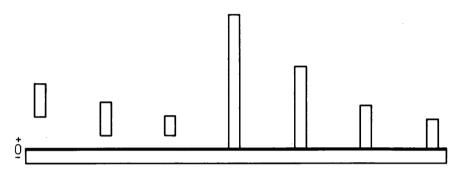


Table 7.4

																	DIE 7.4
Housing Diameter D nominal over up to		Bearing Outside diameter tolerance △Dmp		Outside diameter Tolerances													
				F7		G7		G6		H10		H9		H8		H7	
		low	high			oretical clearanc pable clearance											
mm		μm															
6	10	0	-8	a) +13 b) -13 c) -16	+28 -36 -33	+5 -5 -8	+20 -28 -25	+5 -5 -7	+14 -22 -20	0 0 -3	+58 -66 -63	0 0 -3	+36 -44 -41	0 0 -3	+22 -30 -27	0 0 -3	+15 -23 -20
10	18	0	-8	+16 -16 -19	+34 -42 -39	+6 -6 -9	+24 -32 -29	+6 -6 -8	+17 -25 -23	0 0 -3	+70 -78 -75	0 0 -3	+43 -51 -48	0 0 -3	+27 -35 -32	0 0 3	+18 -26 -23
18	30	0	-9	+20 -20 -23	+41 -50 -47	+7 -7 -10	+28 -37 -34	+7 -7 -10	+20 -29 -26	0 0 -4	+84 -93 -89	0 0 -4	+52 -61 -57	0 0 -3	+33 -42 -39	0 0 -3	+21 30 -27
30	50	0	-11	+25 -25 -29	+50 -61 -57	-9 -9 -13	+34 -45 -41	+9 -9 -12	+25 -36 -33	0 0 -5	+100 -111 -106	0 0 5	+62 -73 -68	0 0 -4	+39 -50 -46	0 0 -4	+25 -36 -32
50	80	0	-13	+30 -30 -35	+60 -73 -68	+10 -10 -15	+40 -53 -48	+10 -10 -14	+29 -42 -38	0 0 -6	+120 -133 -127	0 0 -5	+74 -87 -82	0 0 -5	+46 -59 -54	0 0 -5	+30 -43 -38
80	120	0	-15	+36 -36 -41	+71 -86 -81	+12 -12 -17	+47 -62 -57	+12 -12 -17	+34 -49 -44	0 0 -7	+140 -155 -148	0 0 -6	+87 -102 -96	0 0 -6	+54 -69 -63	0 0 -5	+35 -50 -45
120	150	0	-18	+43 -43 -50	+83 -101 -94	+14 -14 -21	+54 -72 -65	+14 -14 -20	+39 -57 -51	0 0 -8	+160 -178 -170	0 0 -8	+100 -118 -110	0 0 -7	+63 -81 -74	0 0 -7	+40 -58 -51
150	180	0	-25	+43 -43 -51	+83 -108 -100	+14 -14 -22	+54 -79 -71	+14 -14 -21	+39 -64 -57	0 0 -11	+160 -185 -174	0 0 -10	+100 125 115	0 0 -10	+63 -88 -78	0 0 -8	+40 -68 -57
180	250	0	-30	+50 -50 -60	+96 -126 -116	+15 -15 -25	+61 -91 -81	+15 -15 -23	+44 -74 66	0 0 -13	+185 -215 -202	0 0 -13	+115 -145 -132	0 0 -12	+72 -102 -90	0 0 -10	+46 -76 -66
250	315	0	-35	+56 -56 -68	+108 -143 -131	-17 -17 -29	+69 104 92	+17 -17 -26	+49 -84 -75	0 0 16	+210 -245 -229	0 0 -15	+130 -165 -150	0 0 -13	+81 -116 -103	0 0 -12	+52 -87 -75
315	400	0	-40	+62 -62 -75	+119 -159 -146	+18 -18 -31	+75 -115 -102	+18 -18 -29	+54 -94 -83	0 0 -18	+230 -270 -252	0 0 -17	+140 -180 -163	0 0 -15	+89 -129 -114	0 0 -13	+5; -9; -8
400	500	0	-45	+68 -68 -83	+131 -176 -161	+20 -20 -35	+83 -128 -113	+20 -20 -32	+60 105 93	0 0 -20	+250 -295 -275	0 0 -19	+155 -200 -181	0 0 -17	+97 -142 -125	0 0 -15	+6: -1: -9:
500	630	0	-50	+76 -76 -92	+146 -196 -180	+22 -22 -38	+92 -142 -126	+22 -22 -35	+66 -116 -103	0 0 -22	+280 -330 -308	0 0 -21	+175 -225 -204	0 0 -19	+110 -160 -141	0 0 -16	+7 -1: -1

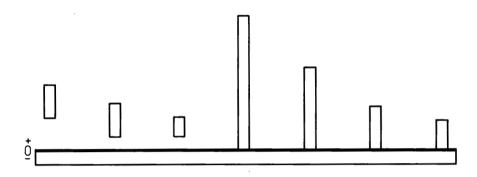


Table 7.4 (continued)

																l able /	.4 (cont	inuea)
Housing Diameter D nominal over up to		Outside diameter tolerance \(^Dmp\)			Deviations of housing bore diameter, resultant fits Tolerances													
					F7	F7		G7		G6			Н9		Н8		H7	
				b) Tighte		ations (housing bore diameter ening/Theoretical clearance ening/Probable clearance)										
nm		μm																
30	800	0	-75	a) b) c)	+80 -80 -102	+160 -235 -213	+24 -24 -46	+104 -179 -157	+24 -24 -41	+74 -149 -132	0 0 -33	+320 -395 -362	0 0 -30	+200 -275 -245	0 0 -27	+125 200 173	0 0 -22	+80 -15 -13
100	1 000	0	~100		+86 -86 -113	+176 -276 -249	+26 -26 -53	+116 -216 -189	+26 -26 -46	+82 -182 -162	0 0 -43	+360 -460 -417	0 0 -39	+230 -330 -291	0 0 -33	+140 -240 -207	0 0 -27	+90 -19 -16
000	1 250	0	125		+98 -98 -131	+203 -328 -295	+28 -28 -61	+133 -258 -225	+28 -28 -52	+94 -219 -195	0 0 -53	+420 -545 -492	0 0 -48	+260 -385 -337	0 0 -41	+165 -290 -249	0 0 -33	+10 -23 -19
250	1 600	0	-160		+110 -110 -150	+235 -395 -355	+30 -30 -70	+155 -315 -275	+30 -30 -60	+108 -268 -238	0 0 -67	+500 -660 -593	0 0 -60	+310 -470 -410	0 0 -51	+195 -355 -304	0 0 -40	+12 -28 -24
600	2 000	o	-200		+120 -120 -170	+270 -470 -420	+32 -32 -82	+182 -382 -332	+32 -32 -67	+124 -324 -289	0 0 -83	+600 -800 -717	0 0 -74	+370 -570 -496	0 0 -62	+230 -430 -368	0 0 -50	+15 -35 -30
000	2 500	0	-250		+130 -130 -189	+305 -555 -496	+34 -34 -93	+209 -459 -400	+34 -34 -77	+144 -394 -351	0 0 -103	+700 -950 -847	0 0 -91	+440 690 599	0 0 -77	+280 -530 -453	0 0 59	+17 -42 -36

Bearings application Housing fits

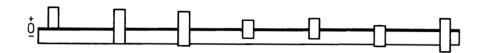


Table 7.4 (continued)

Housing Diameter D nominal over up to		Bearing Outside diameter tolerance ^Dmp		rtside Tolerances											lable		
				H6		J7		JS7		J6		JS6		K6		K7	
		low	high	a) Deviations (housing bore diameter) b) Tightening/Theoretical clearance c) Tightening/Probable clearance													
				, ,													
mm		μm															
6	10	0	-8	a) 0 b) 0 c) -2	+9 -17 -15	-7 +7 +4	+8 -16 -13	-7,5 +7,5 +5	+7,5 -15,5 -13	-4 +4 +2	+5 -13 -11	-4,5 +4,5 +3	+4,5 -12,5 -11	-7 +7 +5	+2 -10 -8	-10 +10 +7	+5 -13 -10
10	18	0	-8	0 0 -2	+11 -19 -17	-8 +8 +5	+10 -18 -15	-9 +9 +6	+9 -17 -14	-5 +5 +3	+6 -14 -12	-5,5 +5,5 +3	+5,5 -13,5 -11	-9 +9 +7	+2 -10 -8	-12 +12 +9	+6 -1 -1
18	30	0	-9	0 0 -3	+13 -22 -19	-9 +9 +6	+12 -21 -18	-10,5 +10,5 +7	+10,5 -19,5 -16	-5 +5 +2	+8 -17 -14	-6,5 +6,5 +4	+6,5 -15,5 -13	-11 +11 +8	+2 -11 -8	-15 +15 +12	+6 -1 -1
30	50	0	-11	0 0 -3	+16 27 24	-11 +11 +7	+14 -25 -21	-12,5 +12,5 +9	+12,5 -23,5 -20	-6 +6 +3	+10 -21 -18	-8 +8 +5	+8 -19 -16	-13 +13 +10	+3 -14 -11	-18 +18 +14	+7 -1 -1
50	80	0	-13	0 0 -4	+19 -32 -28	-12 +12 +7	+18 -31 -26	15 +- 15 +- 10	+15 -28 -23	-6 +6 +2	+13 -26 -22	-9,5 +9,5 +6	+9,5 -22,5 -19	-15 +15 +11	+4 -17 -13	-21 +21 +16	+9 -2 -1
80	120	0	-15	0 0 -5	+22 -37 -32	-13 +13 +8	+22 -37 -32	-17,5 +17,5 +12	+17,5 -32,5 -27	-6 +6 +1	+16 -31 -26	-11 +11 +6	+11 -26 -21	-18 +18 +13	+4 19 14	-25 +25 +20	+1 -2 -2
120	150	0	-18	0 0 -6	+25 -43 -37	-14 +14 +7	+26 -44 -37	20 +20 +13	+20 -38 -31	-7 +7 +1	+18 -36 -30	-12,5 +12,5 +7	+12,5 -30,5 -25	-21 +21 +15	+4 -22 -16	-28 +28 +21	+1 -3 -2
150	180	0	-25	0 0 -7	+25 -50 -43	-14 +14 +6	+26 -51 -43	-20 +20 +12	+20 -45 -37	-7 +7 0	+18 -43 -36	-12,5 +12,5 +6	+12,5 -37,5 -31	-21 +21 +14	+4 -29 -22	-28 +28 +20	+1 -3 -2
180	250	0	-30	0 0 -8	+29 -59 -51	-16 +16 +6	+30 -60 -50	-23 +23 +13	+23 -53 -43	-7 +7 -1	+22 -52 -44	-14,5 +14,5 +6	+14,5 -44,5 -36	-24 +24 +16	+5 -35 -27	-33 +33 +23	+1 -4 -3
250	315	0	-35	0 0 -9	+32 -67 -58	-16 +16 +4	+36 -71 -59	-26 +26 +14	+26 -61 -49	-7 +7 -2	+25 -60 -51	-16 +16 +7	+16 +51 -42	-27 +27 +18	+5 -40 -31	-36 +36 +24	+1 -5 -3
315	400	0	-40	0 0 -11	+36 -76 -65	-18 +18 +5	+39 -79 -66	-28,5 +28,5 +15	+28,5 -68,5 -55	-7 +7 -4	+29 -69 -58	-18 +18 +7	+18 -58 -47	-29 +29 +18	+7 -47 -36	-40 +40 +27	+ 1 -5 -4
40 0	500	0	-45	0 0 -12	+40 -85 -73	-20 +20 +5	+43 -88 -73	-31,5 +31,5 +17	+31,5 -76,5 -62	-7 +7 -5	+33 -78 -66	-20 +20 +8	+20 -65 -53	-32 +32 +20	+8 -53 -41	-45 +45 +30	+1 -6 -4
500	630	0	-50	0 0 -13	+44 -94 -81	=	=	-35 +35 +19	+35 -85 -69	=	Ξ	-22 +22 +9	+22 -72 -59	-44 +44 +31	0 -50 -37	-70 +70 +54	0 -5 -3

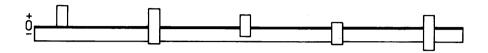


Table 7.4 (continued)

											(
lousing Jiameter	Bearing Outside diameter	Deviations Tolerances	of housing b	ore diamet	er, resultant	fits					
)	tolerance	H6		JS7		JS6		K6		K7	
	∆Dmp	l . _									
ominal		a) Deviation b) Tighteni	ns (housing t ng/Theoretica	ore diamet	er)						
wer up to	low high	c) Tighteni	ng/Probable	al Clearance	•						
	1011 111.	9, 11g1110111	119/1 1000010								
mm	μm	1									
	[···										
30 800	0 -75	a) 0	+50	-40	+40	-25	+25	-50	0	-80	0
		B 0	-125	+40	-115	+25	-100	+50	-75	+80	-75
		c) -17	-108	+18	-93	+8	-83	+33	-58	+58	-53
300 1 000	0 -100		+56	-45	+45	-00	. 00	E0.	0	~~	
300 1 000	0 -100	0	+36 -156	-45 +45	+45 -145	-28 +28	+28 -128	-56 +56	-100	-90 -90	0 -100
		-20	-136	+18	-145 -118	+8	-108	+36	-80	+63	-73
		-20	-136	T10	-110	70	-106	T30	-80	Ŧ03	-/3
1 000 1 250	0 -125	0	+66	-52	+52	-33	+33	-66	0	-105	0
		l o	-191	+52	-177	+33	-158	+66	-125	+105	-125
		-24	-167	+20	-145	+9	-134	+42	-101	+72	-92
250 1 600	0 -160	0	+78	-62	+62	-39	·+39	-78	0	-125	0
		۱ŏ	-238	+62	-222	+39	-199	+78	-160	+125	-160
		-30	-208	+22	-182	+9	-169	+48	-130	+85	-120
600 2 000	0 -200	0	+92	-75	+75	-46	+46	-92	0	-150	0
		۱ŏ	-292	+75	-275	+46	-246	+92	-200	+150	-200
		-35	-257	+25	-225	+11	-211	+57	-165	+100	-150
2 000 2 500	0 –250	_		07	. 07	==	. ==		•	475	•
2 000 2 300	0 –250		+110	-87	+87	-55	+55	-110	0	-175	0
		0 40	-360	+87	-337	+55	-305	+110	-250	+175	-250
		-43	-317	+28	-278	+12	-262	+67	-207	+116	-191

Bearings application Housing fits

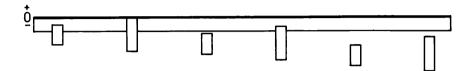


Table 7.4 (continued)

Hous Diam		Bearin Outsid diame	lě	Deviations Tolerance	of housi 8	ng bore di	ameter, re	sultant fit	8						
D		tolera		M6		M7		N6		N7		P6		P7	
nomii	nal	∆Dmp		a) Deviation	ons (housi	ng bore di	ameter)								
over	up to	low	high	b) Tighten c) Tighten	ing/Theor	etical clea	rance								
mm		μm		-,											
6	10	0	-8	a) -12 b) +12 c) +10	-3 -5 -3	-15 +15 +12	0 -8 -5	-16 +16 +14	-7 -1 +1	-19 +19 +16	-4 -4 -1	-21 +21 +19	-12 +4 +6	-24 +24 +21	-9 +1 +4
10	18	0	-8	-15 +15 +13	-4 -4 -2	18 +18 +15	0 -8 -5	-20 +20 +18	-9 +1 +3	-23 +23 +20	-5 -3 0	-26 +26 +24	-15 +7 +9	-29 +29 +26	-11 +3 +6
18	30	0	-9	-17 +17 +14	-4 -5 -2	-21 +21 +18	0 -9 -6	-24 +24 +21	-11 +2 +5	-28 +28 +25	-7 -2 +1	-31 +31 +28	-18 +9 +12	-35 +35 +32	-14 +5 +8
30	50	0	-11	-20 +20 +17	-4 -7 -4	-25 +25 +21	0 -11 -7	-28 +28 +25	-12 +1 +4	-33 +33 +29	-8 -3 +1	-37 +37 +34	-21 +10 +13	-42 +42 +38	-17 +6 +10
50	80	0	-13	-24 +24 +20	-5 -8 -4	-30 +30 +25	0 -13 -8	-33 +33 +29	-14 +1 +5	-39 +39 +34	-9 -4 +1	-45 +45 +41	-26 +13 +17	-51 +51 +46	-21 +8 +13
80	120	0	-15	-28 +28 +23	-6 -9 -4	-35 +35 +30	0 -15 -10	-38 +38 +33	−16 +1 +6 ა	-45 +45 +40	-10 -5 0	-52 +52 +47	-30 +15 +20	-59 +59 +54	-24 +9 +14
120	150	0	-18	-33 +33 +27	-8 -10 -4	-40 +40 +33	0 -18 -11	-45 +45 +39	-20 +2 +8	-52 +52 +45	12 6 +1	-61 +61 +55	-36 +18 +24	-68 +68 +61	-28 +10 +17
150	180	0	-25	-33 +33 +26	-8 -17 -10	-40 +40 +32	0 25 17	-45 +45 +38	-20 -5 +2	-52 +52 +44	-12 -13 -5	-61 +61 +54	-36 +11 +18	-68 +68 +60	-28 +3 +11
180	250	0	-30	-37 +37 +29	-8 -22 -14	-46 +46 +36	0 -30 -20	-51 +51 +43	-22 -8 0	-60 +60 +50	-14 -16 -6	70 70 +62	-41 +11 +19	-79 +79 +69	-33 +3 +13
250	315	0	-35	-41 +41 +32	-9 -26 -17	-52 +52 +40	0 35 23	-57 +57 +48	-25 -10 -1	-66 +66 +54	-14 -21 -9	-79 +79 +70	-47 +12 +21	-88 +88 +76	-36 +1 +13
315	400	0	-40	-46 +46 +35	-10 -30 -19	-57 +57 +44	0 -40 -27	-62 +62 +51	-26 -14 -3	-73 +73 +60	-16 -24 -11	-87 +87 +76	-51 +11 +22	-98 +98 +85	-41 +1 +14
400	500	0	-45	-50 +50 +38	-10 -35 -23	-63 +63 +48	0 45 30	-67 +67 +55	-27 -18 -6	-80 +80 +65	-17 -28 -13	-95 +95 +83	-55 +10 +22	-108 +108 +93	-45 0 +15
500	630	o	-50	-70 +70 +57	-26 -24 -11	-96 +96 +80	-26 -24 -8	-88 +88 +75	-44 -6 +7	-114 +114 +98	-44 -6 +10	-122 +122 +109	-78 +28 +41	-148 +148 +132	-78 +28 +44

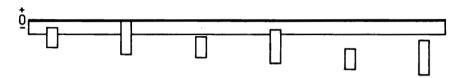


Table 7.4 (continued)

Housing Diameter	Bearing Outside diameter		Deviations Tolerance:		ig bore dia	ameter, re	sultant fits	•						
ס	toleranc		M6		M7		N6		N7		P6		P7	
nominal over up to	∆Dmp low i		a) Deviation b) Tighten c) Tighten	ing/Theore	ng bore dia etical clear ble clearan	ance '								
mm	μm													
630 800	0 -		a) -80 b) +80 c) +63	-30 -45 -28	-110 +110 +88	-30 -45 -23	-100 +100 +83	-50 -25 -8	-130 +130 +108	-50 -25 -3	-138 +138 +121	-88 +13 +30	-168 +168 +146	-88 +13 +35
800 1 000	0 -	-100	-90 +90 +70	34 66 46	-124 +124 +97	-34 -66 -39	-112 +112 +92	-56 -44 -24	-146 +146 +119	56 44 17	-156 +156 +136	-100 0 +20	-190 +190 +163	-100 0 +27
1 000 1 250	0 -	-125	-106 +106 +82	-40 -85 -61	-145 +145 +112	-40 -85 -52	-132 +132 +108	-66 -59 -35	-171 +171 +138	-66 -59 -26	186 + 186 + 162	-120 -5 +19	-225 +225 +192	-120 -5 +28
1 250 1 600	0 -	-160	-126 +126 +96	-48 -112 -82	-173 +173 +133	-48 -112 -72	-156 +156 +126	-78 -82 -52	-203 +203 +163	-78 -82 -42	-218 +218 +188	-140 -20 +10	-265 +265 +225	-140 -20 +20
1 600 2 000	0 -	-200	-150 +150 +115	-58 -142 -107	-208 +208 +158	-58 -142 -92	-184 +184 +149	92 108 73	-242 +242 +192	-92 -108 -58	-262 +262 +227	-170 -30 +5	-320 +320 +270	-170 -30 +20
2 000 2 500	0 -	-250	-178 +178 +135	-68 -182 -139	-243 +243 +184	-68 -182 -123	-220 +220 +177	-110 -140 -97	-285 +285 +226	-110 -140 -81	-305 +305 +262	195 55 12	-370 +370 +311	195 55 +- 4

Deviations of form and position

Permissible deviations of form and position for shaft and housing where bearings are to be mounted are given in fig. 7.3 and table 7.5.

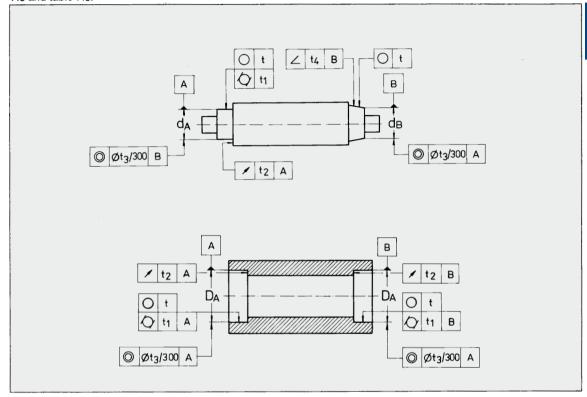


Fig.7.3.

Permissible deviations depending on the tolerance class

Table 7.5

Tolerance name	Fit	Symbol of deviation		Permissible de P0 P6X	P6	ng on the tolera P5	P4(SP)	P2(UP)
Tolerance of dimension	shaft housing	_	-	IT6(IT5) IT7(IT6)	IT5 * IT6	IT4 IT5	IT4 IT4	ПЗ П4
Tolerance of	shaft	\circ	t,t ₁	$\frac{1T4}{2}$ $\left(\frac{1T3}{2}\right)$	$\frac{IT3}{2} \left(\frac{IT2}{2} \right)$	<u>172</u>	<u>IT1</u> 2	<u>Πο</u> 2
cylindricity	housing	0 0	t,t ₁	$\frac{175}{2}$ $\left(\frac{174}{2}\right)$	$\frac{\text{IT4}}{2} \left(\frac{\text{IT2}}{2} \right)$	<u>П3</u>	<u>Π2</u>	<u> T1</u> 2
Tolerance of face runout	shaft housing	1	t2	IT4(IT3) IT5(IT4)	IT3(IT2) IT4(IT3)	Π2 Π3	П1 П2	ITO IT1
Tolerance of concentricity	shaft housing	0	tз	IT5 IT6	IT4 IT5	IT4 IT5	IT3 IT4	IT3 IT3
Tolerance of angularity	shaft	_	t ₄	<u>IT7</u> 2	<u>IT6</u>	<u> T4</u> 2	<u>ПЗ</u>	<u>П2</u> 2

In case of bearings on which adapter or withdrawal sleeves are to be mounted, the shaft tolerances for deviations of form and position should be to IT 5/2 tolerance class for shafts with diameter tolerance h9 and IT7/2 for

shaft tolerance h10.

Surface roughness of bearing seating is given in table 7.6.

Shaft and housing mounting surfaces roughness

Table 7.6

Table 7.7

Shaft			Housing	Housing				
Diameter d, mm			Diameter	Diameter D, mm				
≤80	>80500	>500	≤80	>80500	>500			
Roughne	ess Ra, µm							
0,8 (N6)	1,6 (N7)	3,2 (N8)	0,8 (N6)	1,6 (N7)	3,2 (N8)			
0,4 (N5)	0,8 (N6)	1,6 (N7)	0,8 (N6)	1,6 (N7)	1,6 (N7)			
0,2 (N4)	0,4 (N5)	0,8 (N6)	0,4 (N5)	0,8 (N6)	0,8 (N6)			
	Diamete ≤80 Roughne 0,8 (N6) 0,4 (N5) 0,2	Diameter d, mm ≤80 >80500 Roughness Ra, μm 0,8 1,6 (N7) 0,4 0,8 (N5) (N6) 0,2 0,4	Diameter d, mm ≤80 >80500 >500 Roughness Ra, μm 0,8 1,6 3,2 (N6) (N7) (N8) 0,4 0,8 1,6 (N7) 0,4 (N6) (N7) 0,2 0,4 0,8	Diameter d, mm Diameter ≤80 >80500 >500 ≤80 Roughness Ra, μm 0,8 1,6 3,2 0,8 (N6) (N7) (N8) (N6) 0,4 0,8 1,6 0,8 (N5) (N6) (N7) (N6)	Diameter d, mm Diameter D, mm ≤80 >80500 Sequence Reserve >80500 Roughness Res, μm 0,8 1,6 0,8 1,6 (N6) (N7) (N8) (N6) 0,4 0,8 1,6 (N5) (N6) (N7) 0,2 0,4 0,8 0,4 0,8 0,4 0,8			

If bearings are mounted with adapter or withdrawal sleeves, shaft surface roughness should be of max. $R_a=1.6\,\mu\text{m}$.

Nominal dimension, mm

The values of fundamental tolerances - ISO (tolerance classes IT0...IT12) are given in table 7.7.

Tolerance ISO (IT)

			,																		
over up to	1 3	3 6	6 10	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	400 500	500 630	630 800	800 1 000	1 000 1 250			2 000 2 500	
Tolerar	nces in	micro	meters	(0,001	mm)																
ITO	0,5	0,6	0,6	0,8	1	1	1,2	1,5	2	3	4	5	6								
IT1	0,8	1	1	1,2	1,5	1,5	2	2,5	3,5	4,5	6	7	8								
IT2	1,2	1,5	1,5	2	2,5	2,5	3	4	5	7	8	9	10								
IT3	2	2,5	2,5	3	4	4	5	6	8	10	12	13	15								
T4	3	4	4	5	6	7	8	10	12	14	16	18	20								
T5	4	5	6	8	9	11	13	15	18	20	23	25	27	29	32	36	42	50	60	70	86
T6	6	8	9	11	13	16	19	22	25	29	32	36	40	44	50	56	66	78	92	110	135
T7	10	12	15	18	21	25	30	35	40	46	52	57	63	70	80	90	105	125	150	175	210
T8	14	18	22	27	33	39	46	54	63	72	81	89	97	110	125	140	165	195	230	280	330
T9	25	30	36	43	52	62	74	87	100	115	130	140	155	175	200	230	260	310	370	440	540
T10	40	48	58	70	84	100	120	140	160	185	210	230	250	280	320	360	420	500	600	700	860
T11	60	75	90	110	130	160	190	220	250	290	320	360	400	440	500	560	660	780	920	1 100	1 350
T12	100	120	150	180	210	250	300	350	400	460	520	570	630	700	800	900	1 050	1 250	1 500	1 750	2 100

Bearing axial location

Axial location of bearings is necessary for a proper guiding of bearing in an assembly under operation.

An tight fit is inadequate for the axial location of bearing. In case of locating bearings, axial location for both rings is generally needed. Some important solutions of bearing axial location, on shaft or into the housing are shown in Fig.7.4.

In case of bearings with light axial loads, bearings can be located using a lock nut and a lock washer (a), an end plate fastened by a screw at the shaft end (b) and, for bearings carrying light axial loads, by lock rings mounted in shaft and housing grooves (c).

Bearings with NR design, with groove and snap ring on the outer ring can be easily located by the lock ring (d). Tapered roller bearings can be located by supporting the inner ring on the shaft shoulder and the outer ring with a threaded ring and a safety plate fastened by a screw (e).

Tapered bore bearings can be mounted and axially located by adapter or withdrawal sleeves (f, g, h).

The axial load carrying capacity of the bearings mounted with adapter or withdrawal sleeves is governed by the friction between shaft and sleeve (g).

To locate radial bearings, where axial adjustment of the shaft is required, setting washers (i) or spacer rings (j) are used between the outer rings, the width of the spacer ring being experimentally determined, during mounting.

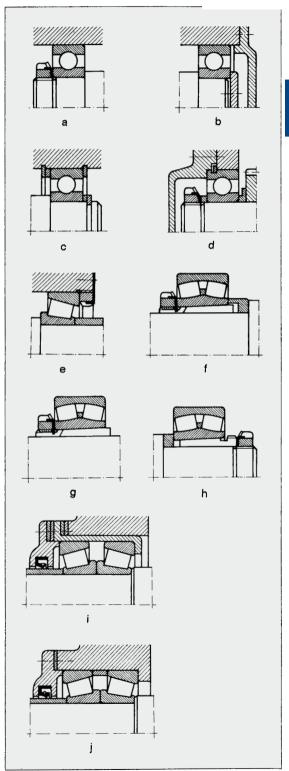


Fig. 7.4

Bearing sealing

Seals are used in most of bearing arrangements and they must ensure the conditions of a proper operation.

For such a purpose, they have to prevent solid contaminants (dust, hard particles, water, aggressive substances etc.) from penetrating into the bearing and at the same time to retain the lubricant in the bearing.

Seals for rolling bearings can be classified considering some important criteria such as: design, operation, type of lubricant etc.

Considering their design and operation, seals can be: stationary seals between the stationary bearing elements (housing and cover), rotary seals, between the rotating bearing elements and they also can be rubbing seals or non-rubbing seals, which are used in special applications (surroundings conditions and loading stress).

Rotary non-rubbing seals are often used due to their simple design. They are particularly used at high speeds or temperatures, both for grease and oil, and have practically no friction and do not wear.

In case of bearing grease lubrication, bearing operating temperature must be lower with 20°C than the dropping point of the grease (melting temperature).

The main constructive types of rotary non-rubbing seals have narrow gaps, labyrinths and their combinations are shown in fig. 7.5 a-c.

Gap seals represent the simplest constructive solution for a rotary non-rubbing seal which have to retain grease in the bearing housing. The efficacy of sealing depends on the gap length (L) and the clearance between shaft and housing. It can be improved by providing one or more circular grooves on the shaft or in the housing, which are to be filled with grease (b). In case of oil lubrication, the grooves on the shaft must be helical (c) and their direction must be the same with the direction of the shaft rotary movement.

Experiments proved that most favorable clearance is obtained between the limits of the fit A11/h10, geometrical deviations should be IT6 and gap surface roughness $R_{a}=12.6\,\mu m.$

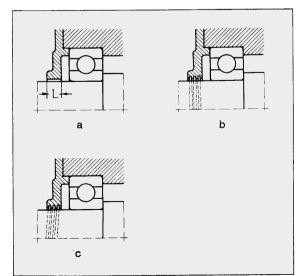


Fig. 7.5

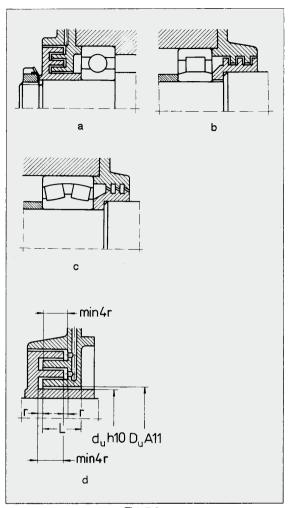


Fig. 7.6

Labyrinth seals are used at high peripheral speeds, in impure surroundings. They are shown in fig. 7.6 a-d.

The labyrinths are spaces where periodically water-insoluble grease (e.g. Lithium or Calcium base grease) is to be supplied.

The tongues of the labyrinth seals can be radially (a), axially (b) arranged or they can have inclined passages.

Details of an axial labyrinth design are given in fig. 7.6 d and values of axial clearance r and length L are given in table 7.8.

Values for dimensions r and L

Table 7.8

d over	up to	Axial clearance r	Length L	_
mm				
_ 50 120	50 120 180	1,5 2 2,5	13,527 1836 22,545	

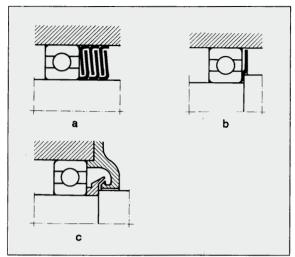


Fig. 7.7

Sealing efficacy increases where both radial and axial labyrinths are used and the number of gaps is increased.

Other types of seals are shown in fig. 7.7 a-c.

in case of rotary rubbing seals there is a direct contact between a seal elastic element and the rotating element. They are shown in fig. 7.8.

When selecting the proper rotary rubbing seal, the following factors have to be considered: material and its elasticity (felt, rubber, plastics, leather, graphite, asbestos etc.); resistance at various temperatures, maximum peripheral speed on sealing surface; sealing direction etc. These systems have sealing properties higher than those corresponding to non-rubbing seals. In case of grease lubrication at peripheral speeds higher than 4 m/s and temperatures over + 100°C, felt ring seals (a) are frequently used because of their simple design and cheapness.

Before mounting, felt rings are impregnated during an hour with a mixture of mineral oil (66%) and paraffin (34%), at a temperature of +70...+80°C so that sealing properties are improved as the friction is reduced.

At higher temperatures and peripheral speeds over 12 m/s, surface roughness is $R_a=1.6~\mu m$ and the space between the ends of the seal should be filled with grease. Two felt rings can be used for sealing.

Rubbing seals with a spring incorporated are preferably to be used in case of oil lubricated bearings which are operated under peripheral speeds of 5-10 m/s, temperatures between -40°C and +20°C. Their efficacy depends on the material and operating surroundings.

In most cases, rubbing seals with a spring incorporated are made of synthetic rubber and have a metallic hardening fixture.

Inclined sealing surfaces are recommended to be ground at $R_a=0.8\mu m$ and hardened at 45 HRC, when operating at peripheral speeds over 8 m/s. Lubricant outflow can be stopped by mounting the rubbing seal with incorporated spring with the edge inwards (c) or outwards (d) if sealing has to prevent dust or other impurities from penetrating into the bearing.

Double sealing with these rubbing seals can also be used.

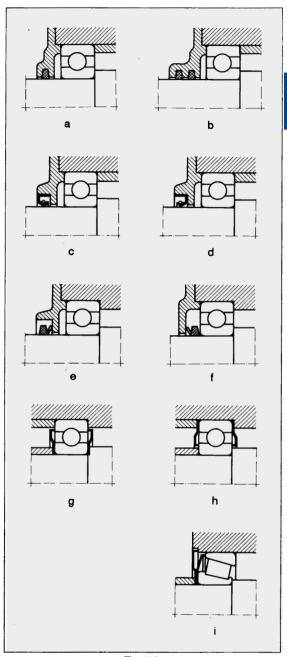


Fig. 7.8

V-ring seal is used to prevent dust or contaminants from penetrating into the bearing with best results both in case of grease or oil lubrication. The elastic rubber lip of the V-ring seal is notched on the plane sealing surface, drawing the fluids in centrifugal motion. V-ring seals are used at temperatures of $-40^{\circ}\text{C...} + 100^{\circ}\text{C}$, roughness of sealing surface being $R_a = 1,5-3\,\mu\text{m}$. Generally, at peripheral speeds up to 15 m/s, the V-ring seal operates as a rubbing seal

(seal lip reaches sealing surface), and at peripheral speeds over 15 m/s the seal lip will lift from the sealing surface, operating as a centrifugal sealing.

V-ring seals can also be used in case of angular misalignments of the shaft (2°...3°), as they are made of high quality, elastic rubber, easy to be mounted.

The efficacy of sealing depends on the fact that the ring body acts as a flinger for dirt and fluids. Therefore, with grease lubrication the seal is generally arranged outside the housing and with oil lubrication it is placed inside the housing.

Pressed sheet washers provide simple, inexpensive and space-saving sealing especially for grease lubricated deep groove ball bearings. The washers are clamped against either the outer ring or the inner ring and exert a resilient pressure axially against the rubbing ring. For tapered roller bearings, two elastic washers are usually used, the space between them being filled with grease.

In case of usual applications, the types of seals mentioned above or their combinations shown in fig. 7.9 are used, some of them becoming standard seals for rolling bearings (e.g. labyrinths, felt rings, V-rings etc.). Thus, better sealing can be obtained if felt ring (a) or V-ring (b) rubbing seals are combined with radial or axial labyrinth non-rubbing seals.

Special seals are used in case of unusual surroundings and loading conditions (e.g. rolling mills, helm of ocean-vessels, main shaft of grinding machines etc.)

Sealed bearings of the type 2RS (2RSR) (a) or shielded bearings of the type 2Z (2ZR) (b) shown in fig. 7.10 a.b. provide simple and inexpensive sealing, with upper operating results. These rolling bearings are delivered ready greased, provision for relubrication and maintenance are not needed. They are used in case of bearings with small free space where other seals cannot be used.

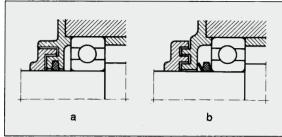


Fig. 7.9

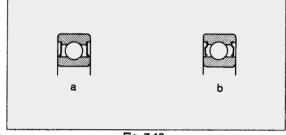


Fig. 7.10

8. Bearing lubrication

Safe operating and long rating life of bearings depend on the lubricant type and quality and on the lubrication method. Bearing lubrication is used for certain purposes, such as:

- to reduce friction between rolling elements and raceway, rolling elements and cage, cage and guiding ribs of rings during operation;
 - to ensure anticorrosive protection of bearings;
 - to reduce noise in bearing within certain limits:
- to distribute heat uniformly in contact areas and to remove it outside through lubricant circulation.

Lubricants for bearing lubrication should satisfy the following conditions:

- they should have physical and chemical stability;
- foreign mechanical substances (abrasive, metallic substances etc.) are not admitted in lubricant;
 - they should have a minimal coefficient of friction;
 - to be non-corrosive;
 - good unctuosity (lubricating capacity).

There are two categories of lubricants used for bearing lubrication:

- fluid lubricants (oils);
- plastic lubricants (greases).

Table 8.1 shows comparison between fluid and plastic lubricants.

Although fluid lubricants have better characteristics than plastic lubricants, they cannot be used in all cases because of sealing difficulties.

Comparative values for lubricants

Table 8.1

Characteristics	Lubricant Fluid	Plastic
speed	any value	low and medium
friction	low (reduced)	high
unctuosity	excellent	good
service life	long	short
cooling effect	high	low
replacement	easy	difficult

Selection of lubricants

When selecting lubricants, much care is needed and all operating conditions and lubricant properties should be considered.

No lubrication system can be considered universal.

The most important criteria when selecting a lubricant have to be as follows:

- size of bearing
- speed
- load
- bearing operating temperature

These characteristics act upon lubricant viscosity as follows:

- the higher the bearing size, value of load and temperature, the higher the viscosity
- bearing speed acts by product D_m n, as shown in table 8.2.

Corelation between D_m n and lubricant type

Dm n over	up to	Lubricant type
_	150×10 ³	Mineral oil and grease with medium or high viscosity
150×10 ³	300×10 ³	Mineral oil with medium viscosity and grease
300×10 ³	500×10 ³	Mineral oil with low viscosity and grease
500×10 ³	1 200×10 ³	Mineral oil with low viscosity and lubricating equipment

Grease lubrication

Grease can be used to lubricate rolling bearings only when product $D_m n \le 500 \times 10^3$ and it offers the following

advantages:

- it is more easily retained in the bearing;
- it assures anti-corrosive protection to bearing as it is water-resistant;
 - low expenses for sealing.

The grease quantity to be supplied shouldn't be excessive, otherwise rotation is braked, friction increases and also operating temperature without extending the bearing rating life.

The quantity of grease that is to be inserted in bearing seating should be as follows, considering the free space inside the housing:

- 1/2...3/4 of the free space in the housing, in case of normal speeds;
- 1/3 of the free space in the housing, in case of high speeds and speed limit;
- the whole housing space should be free, in case of low speeds and product D_m n $< 10 \times 10^3$.

The quantity of grease can be calculated as a function of bearing bore diameter using the equation:

$$G = K d^{2,5}, g.$$

where:

K = 1/900 - for ball bearings

K = 1/350 - for roller bearings

d = bore diameter, mm

Relubrication intervals in most cases can be experimentally determined and depend on:

- bearing type
- bearing size
- operating temperature
- grease properties

Grease service life and relubricating interval can be calculated from:

$$T_{ur} = k_0 \left(\frac{14 \times 10^6}{n d} - 4d \right) f_1 f_2,$$

where:

 $T_{\text{ur}} = \text{service life or relubricating interval, in operating hours} \,$

 k_0 = coefficient depending on the bearing type, table 8.3

n = speed, r/min

d = bore diameter, mm

f₁ = temperature factor, table 8.4

 f_2 = factor depending on the operating conditions, table 8.5

Values for coefficient ko

Table 8.3

Bearing type	Value of k0 Relubrication interval	Grease service life
Angular contact ball bearings Tapered roller bearings Thrust ball bearings	1	2
Cylindrical roller bearings Needle roller bearings	5	15
Deep groove ball bearings	10	2040

Low values are valid for deep groove ball bearings with shields, 2Z type, or with seals, 2RS type, series 60, 62 and 63.

Values for factor f

Table 8.4

Temperature	70°C	85°C	100°C
Factor f ₁	1	0,5	0,25

Values for factor for

Table 8.5

Operating conditions	Light	Moderate	Hard	Very hard	
Factorul f2	1	0,70,9	0,40,7	0,10,4	

Bearing relubrication interval can be also determined using the chart - fig. 8.1, as a function of bearing type, bore diameter and speed.

Example:

A bearing 6208-2RSR is operated under reduced load (it is not considered for calculation), at a speed $n=1500\,\text{r/min}$, at a temperature of +60deg C, light operating conditions. What is the grease service life and relubrication interval?

Grease service life will be-

$$T_u = k_0 \left(\frac{14 \times 10^6}{n \text{ d}} - 4d \right) f_1 f_2 = 32 893 \text{ hours,}$$

ko = 25 from table 8.3

d = 40 mm

 $f_1 = 1$, from table 8.4

 $f_2 = 1$, from table 8.5

Relubrication interval:

$$T_{\Gamma} = k_0 \left(\frac{14 \times 10^6}{\text{n d}} - 4d \right) f_1 f_2 = 13 157 \text{ hours,}$$

 $k_0 = 10$, from table 8.3

 $f_1, f_2 = 1$, from tables 8.4, 8.5.

From the diagram fig. 8.1, the value of the relubrication interval will be of 13 500 operating hours.

The grease quantity to be supplied can be determined using the equation:

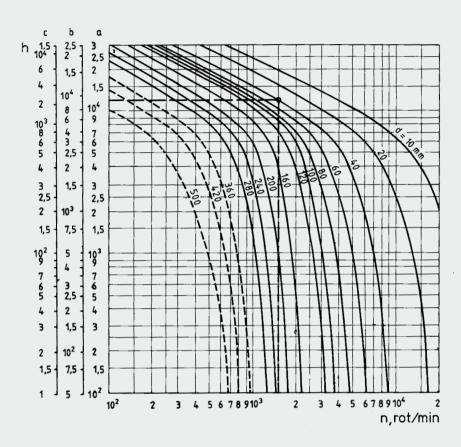
$$G = KDB, g,$$

where:

G = grease quantity, g

K = coefficient depending on the relubrication interval, table 8.6

D = bearing outside diameter, mm


B = total bearing width for radial bearings, mm and total bearing height for thrust bearings, mm

Values for coefficient K

Table 8.6

Relubrication interval	К
weekly	0,00150,0020
monthly yearly	0,00200,0030 0,00300,0045
after 23 years	0,00450,0055

Scale a; deep groove ball bearings

Scale b; cylindrical and needle roller bearings

Scale c; spherical roller bearings, taper roller bearings, thrust ball bearings, roller thrust bearings and needle roller bearings, cylindrical and needle roller bearings without cage, crossed roller bearings, spherical roller thrust bearings.

Fig. 8.1

The chart in fig. 8.1 applies to operating temperatures which do not exceed +70°C. For operating temperatures over +70°C, see table 8.4.

Grease service life can be defined as the period of time when it preserves physical and mechanical characteristics in time and oxidizing due to temperature and vaporization of base oil doesn't occur.

A more accurate calculation of grease service life, considering grease quality and bearing operating conditions (load, size, speed, temperature etc.) can be done using the equation:

$$L = 10^{a-(m_1+m_2+m_3)}$$

where:

L = service life, operating hours

a = exponent depending on the grease quality (a = 5,8...6,1)

m₁...m₃ = exponents which take into account the follow-

ing factors:

 $m_1 = 4.4 \times 10^{-6} D_m n$

 $m_2 = 2.5(P/C - 0.05),$

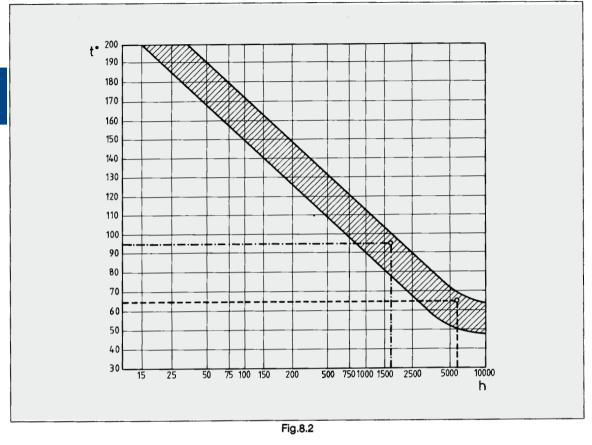
 $m_3 = (0.021 - 1.80 \times 10^{-6} D_m n)T$,

D_m = bearing mean diameter, mm,

n = bearing speeds, r/min,

P = equivalent radial load, kN,

C =basic dynamic load, kN,


bearing operating temperature, °C

When calculating the values of t, D_m n and P/C, the following have to be considered:

- when bearing operating temperature is lower than +50°C, then t = +50°C
- when speed factor $D_m n < 125000$, then $D_m n =$ = 125000
- when ratio P/C < 0.05, then P/C = 0.05

Grease service life, as a function of operating temperature can be approximately determined using the diagram fig. 8.2.

Example 1

A bearing 6210 operates under a load $P_f=5\,kN$, speed $n=3000\,r/min$ at an operating temperature $T=50\,^{\circ}C$. What is the service life of the grease used for bearing lubrication?

$$\begin{split} &C_{T}=35.1 \text{ kN, tables on page } 132, \text{ bearing } 6210 \\ &L=10^{8-(m_1+m_2+m_3)}=10^{6,1-2.273}=10^{3,827}=6\,214 \text{ hours} \\ &a=6,1, \text{ for Mobil grease,} \\ &D_{m}\,n=65\times3\,000=195\times10^{3} \\ &P_{f}/C_{f}=5/35,1=0,143 \\ &m_{1}=4,4\times10^{-6}D_{m}\,n=0,858 \\ &m_{2}=2.5\,(P_{f}/C_{T}-0,05)=0,23 \\ &m_{3}=(0,021-1,80\times^{-8}D_{m}\,n)85=1,119 \\ &m_{1}+m_{2}+m_{3}=2,273 \end{split}$$

Example 2

For the same bearing and operating conditions as in Example 1, it is required to find the service life of the same grease at a temperature of $T=95^{\circ}\mathrm{C}$.

$$m_3 = 1,86$$

 $m_1 + m_2 + m_3 = 2,794$
 $L = 10^{6,1} - 2,794 = 10^{3,306} = 1,774$ operating hours

From the diagram fig. 8.2, we can find approximately the same value, respectively 6 000 operating hours at $+65^{\circ}$ C and 1 700 operating hours at $+95^{\circ}$ C.

Table 8.7 shows technical characteristics of usual grease, which are recommended for lubrication of sealed and shielded bearings, 2RS and 2Z types and also for rolling bearings in various assemblies and machines.

Technical characteristics for usual greases for bearing lubrication

Table 8.7

Grease main co	mponents	Dropping point °C	Temperature range (continuous running)	Application	Grease type, producer
Base oil	Thickener		· · · · · · · · · · · · · · · · · · ·		
Mineral oil	Lithium soap	170°C-190°C	–30°C+130°C	Ball, roller and needle roller bearings: - small and medium sized, - moderate speeds, - temperatures up to 70°C	Mobilux 2-3, Mobil Austria, Castrol Spherol SRB2 Castrol Germany Shell Alvania R 2-3, Shel England Aguila Nr30, Brugarolas Spain UM 185 Li 2-3, Lubrifin Braşov
Mineral oil + additive for excessive pressure (EP)	Lithium soap	185°C-190°C	-30°C+150°C	Ball and roller bearings, - moderate speeds, - heavy loads, shock loads, - continuous running t /mperature + 130°C, - initial lubrication and relubrication at periods of 6-9 months	- Mobilux EP 2-3, Mobil Austrie - Shell Alvania EP 2-3, Shel England - Beacon EP 2, Esso Germany
Synthetic oil (diesteric)	Lithium soap	180°C-230°C	-30°C+130°C	Bearings for electrical motors, generators, electronic equipment, - small sizes, - light loads, - high speeds D _m ×n ≤1000 x 10 ³	- Beacon 325, Esso Germany
Synthetic oil (diesteric)	Lithium soap	190°C-230°C	-50°C+120°C	Bearings for electrical motors, generators, electronic equipment, - small sizes, - light loads, - high speeds Dm×n ≤1000 x 10 ³	- Izoflex LDS 18 Special A Kluber Lubrication Germany
Mineral oil	Complex calcium soap	100°C-180°C	−30°C+130°C	Bearings for general applications, - heavy loads, moderate speeds, - continuous running temperature 100°C	 Beacon 2-3, Esso Germany Beacon EP1, Esso Germany UM 170 Li Ca 2-3, Lubrifit Braşov
Synthetic oil	Without soap, synthetic thickener	indeterminate	−30°C + 250°C	Bearings for general applications, - large sizes, - low speeds Dm>n < 200 x 10 ³ , - high temperature	- Barlerta 1S, Klube Lubrication Germany
Synthetic oil + additive for excessive pressure (EP)	without soap, syn- thetic thickener	265°C	-54°C+177°C	Spherical roller thrust bearings, roller thrust bearings etc., bearings operating with high friction, - moderate and high speeds, - low and high temperatures	- Mobilgrease 28, Mobil Austri
Synthetic oil	without soap, inorganic thickener	260°C	–50°C + 177°C	Bearing for general applications, - light loads, - high speeds, - low and high temperatures	- Armingras BT-2, Burgarola: Spain
			–30°C + 140°C	Cylindrical roller bearings, - moderate and high speeds Dm×n ≤300 × 10 ³	- Statburgas NUB12, Klube Lubrication Germany
			0°C+260°C	Roller bearings operating at high temperatures	- Mobiltemp 1-2, Mobil Austri

Oil lubrication

Oil lubrication can be used in any operating condition, but this kind of lubrication is compulsory when the value of the product Dmxn from table 8.2, namely $D_m\ n < 500\times 10^3$ is exceeded for grease and when high temperatures occur in bearing. Then, oil has to lubricate and to remove heat from bearing.

Oils used for bearing lubrication can be:

- mineral oils, used up to a temperature of +150°C
- synthetic oils, used up to a temperature of +220°C

For a proper lubrication of bearings, low quantities of lubricants to reach the rolling elements are needed.

The lubricating systems must provide oil quantity necessary to prevent oil draining from bearing and heat removal in case of high speeds.

Most usual oil lubricating systems depending on factor D_m n are given in table 8.8.

Oil lubricating systems

Table 8.8

Lubricating system	Operating conditions	Factor D _m n	Oil viscosity at 40°C (m ² /s)	Example in fig.
Oil bath	Bath is filled up to the lowest rolling element for horizontal shaft and 70-80% of bath width for vertical shaft	< 250×10 ³	(17300) × 10 ^{−6}	8.3 a), b)
Oil bath with external circulation	Central tank, oil circulates under a pressure of 1,5 MPa. High speeds.	< 600×10 ³	(45175) × 10 ⁻⁶	8.4
Oil injection	Oil is injected into the operating area under a pretssure on 0.10.5 MPa, with flow capacity of 0.510 l/min depending on temperature. Heavy loads and high speeds.	of < 900×10 ³	(13,580) × 10 ⁻⁶	8.5
Oil spot	Oil in air current under a pressure of (0.050.5)MPa, flow capacity of (0,54) m /hour, 0.54)m/hour for small and medium-sized bearings, heavy loads and high speeds.	< 1200×10 ³	(1045) × 10 ⁻⁶	8.6

Approximate values of oil kinematic viscosity at $+40^{\circ}$ C depending on the operating temperature are given in table 8.9.

Corelation between viscosity and temperature Table 8.9

Temper	ature t°C	Viscosity at 40°C, cSt
over	up to	at 40 0, tol
- 50	50 80	1260 3775,5
80	120	> 75,5

Diagram fig. 8.7 shows kinematic viscosity classes at 40° C in accordance with ISO, its variation depending on the operating temperature (t $^{\circ}$ C) in relation to speed and bearing mean diameter (D_m).

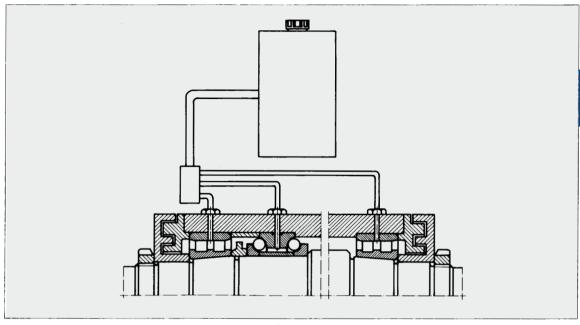


Fig. 8.6

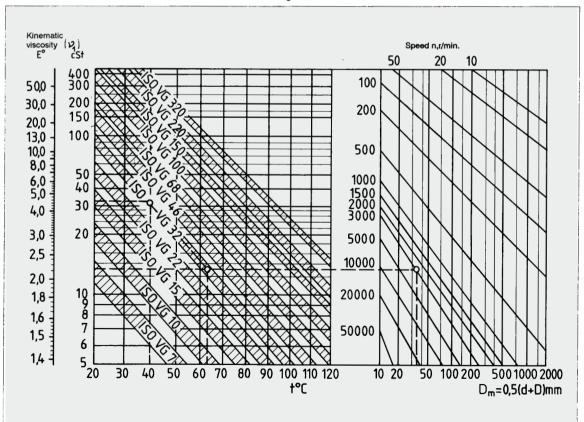


Fig. 8.7

Example

A bearing 6204 is to operate under a speed n = 2 000 r/min at a temperature t = $+65^{\circ}$ C. D $_{\cdot,1}$ = 0,5 (d+D) = 35,5 mm. The viscosity of the oil for bearing lubrication is required. From the diagram, for Dr_m = 35,5 mm, we can find viscosity at $+65^{\circ}$ C, ν_1 = 13 cSt and viscosity at $+40^{\circ}$ C. ν = 32 cSt.

Table 8.10 shows oils which are recommended by ISO for bearing lubrication. Values of kinematic viscosity at $+40^{\circ}$ C, mm²/s are also given.

Recommended oils by ISO standards **Table 8.10**

				Table 6.10		
Class IS	0		Kinematic viscosity at +40°C, mm ² /s (cSt)			
		mean	low	high		
ISO VG	2	2,2	1,98	2,42		
ISO VG	3	3,2	2,88	3,52		
ISO VG	5	4,6	4.14	5,06		
ISO VG	7	6,8	6,12	7,48		
ISO VG	10	10	9	11		
ISO VG	15	15	13,5	16,5		
ISO VG	22	22	19,8	24.2		
ISO VG	32	32	28,8	35,2		
ISO VG	46	46	41,4	50,6		
ISO VG	68	68	61,2	74,8		
ISO VG	100	100	90	110		
ISO VG	150	150	135	165		
ISO VG	220	220	198	242		
ISO VG	320	320	288	352		
ISO VG	460	460	414	506		
ISO VG	680	680	612	748		
ISO VG	1 000	1 000	900	1 100		
ISO VG	1 500	1 500	1 350	1 650		

9. Bearing designation

The purpose of designation is that of identification of bearings, so that bearings with the same designation to be interchangeable both dimensionally and operationally no matter who the producers may be. Designations of rolling bearings are in accordance with those used by world-known bearing companies: SKF, FAG, INA, KOYO

etc. and they are standardized by national standard

The complete designation of a bearing consists of a basic design and may include one or more supplementary designations (prefixes and suffixes), as shown in chart fig.9.1.

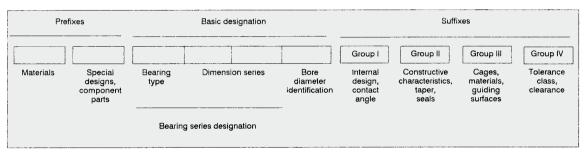


Fig. 9.1

The basic designation consists of an identification of the type of bearing (figure or letter), the series designation, in accordance with ISO and the bore diameter identification.

The designations of the bearing type and dimension series for main standardized and unstandardized bearing types are given in table 9.1.

Bore diameter identification consists of one, two or more figures as follows:

- bore diameter from 1 to 9 mm
- one figure, representing the bore diameter (e.g. 623, 608);
- bore diameter from 10 to 495 mm
- two figures, as follows:00 for 10 mm, 01 for 12 mm, 02 for 15 mm, 03 for 17 mm, 04 and up to 99 for bore diameter from 20 to 495 mm. (bore diameter = bore diameter identification x 5, e.g. 6230, d = 150 mm):

- bore diameter of 500 mm and over 500 mm
- is stated directly separated by a slash, the same applies to the values which are not perfect multiples of 5, or if they include a decimal point (e.g. 610/560, 62/32, 62/1,5).

Dismountable single row deep groove ball bearings of magneto-type (E, BO, L, M), non-standardized needle roller bearings, needle roller and cage assemblies, support rollers, cam followers and other types of special bearings listed in this catalogue make an exception from this rule. In this cases, the values of bore diameter are stated (e.g. E15, L20, NA304520, K121515, NATR22).

Prefixes

Prefixes are letter-identifications which indicate the material, other than steel for bearings or component parts of bearing. The prefix for material is separated by a horizontal line from the rest of designation.

Prefixes for materials

H - heat-resisting steel (e.g. H - NUP 210)

M - copper alloy (e.g. M - 6008)

S - plastics, glass, ceramics etc. (e.g. S - 6204)

T - case - hardening steel (e.g. T - 35352)

X - stainless steel (e.g. X - 6202)

Prefixes for special designs or parts of bearings

 BL - single row deep groove ball bearings with maximum number of balls (e.g. BL6208)

 cage with rolling elements of dismountable bearing (e.g. KNU205)

 free ring of dismountable bearing (e.g. LNU205) (interchangeable ring, e.g. L30205)

dismountable bearing without free ring)
 (e.g. RNU205; RN205)

E - shaft washer of thrust ball bearing (e.g. E51210)

housing washer of thrust ball bearing (e.g. W51216)

WS - shaft washer of roller thrust bearing (e.g. WS81108)

 housing washer of roller thrust bearing (e.g. GS 81112) LS - axial washer, thickness greater than 1 mm (e.g. LS 2035)

- axial washer, thickness less than 1 mm or less (e.g. AS 2035)

Suffixes

Suffixes are used to identify various constructive modifications of the bearing in comparison to normal design. They are classified in four different groups, as follows:

Group I - Modifications of internal design, design with increased basic load (e.g. A, C, E etc.), contact angle (e.g. A, B, C) and others.

Group II - Modifications of external design, tapered bore, groove on outer ring etc. (e.g.

30205A, 1210K, 6210NR, 6310-2RS)

Group III

- Modifications of cage design, material, guiding surfaces etc. (e.g. 6205TN, NU310MA).

Group IV - Modifications of normal design regarding tolerance classes, bearing radial or axial clearance, stability of dimensions at high

clearance, stability of dimensions at high temperatures, bearing matching etc. (e.g. 6206P5, 6310P53, NU210SO, 7010CDB).

These suffixes for bearing designation are listed considering the groups they belong to, at the beginning of each bearing group.

GS

10. Examples of bearing calculation

Example no. 1

Operating conditions

- Oscilating movement with angular amplitude y = 15°,
- Steady radial load: 5 kN.

Problem to be solved

A deep groove ball bearing, single row, with the smallest width is to be selected so that a rating life of 10 000 cycles should be economically satisfied.

Answer

On page 23, the following equation can be found:

$$L_{10osc} = \frac{180^{\circ}}{2\gamma} L_{10}$$

Using this equation, bearing rating life for complete rotary movement can be determined:

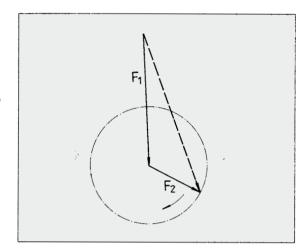
$$L_{10} = \frac{2\gamma}{180} L_{10osc}$$

$$C_r = P_r \sqrt[3]{L_{10}} = P_r \sqrt[3]{\frac{2\gamma}{180}} L_{OSC} = 5 \sqrt[3]{\frac{2 \cdot 15}{180}} 10 \cdot 10^3 = 59.3 \text{ kN}$$

Bearing 6310 can be found on page 133 with: $C_f = 61.8 \ kN \ si \ d = 50 \ mm$, D = 110 mm, B = 27 mm.

Example no. 2

Operating conditions


- Rotary movement under a radial load with a component steady in magnitude and direction $F_1=25\,\mathrm{kN}$ and a component with variable direction and steady magnitude $F_2=10\,\mathrm{kN}$. Components F_1 and F_2 are acting in the same plane (see the figure below).
 - Component F2 rotates n = 3 000 r/min.
 - Oil lubrication.

Problem to be solved

A single row cylindrical roller bearing NU type , with outside diameter less than 220 mm, and a rating life $L_{10h}=20\,000$ operating hours should be selected.

Answer

We calculate

$$k = \frac{F_1}{F_1 + F_2} = \frac{25}{25 + 10} = 0,7$$

From fig. 5, page 25, for k = 0.7 corresponds $f_m = 0.79$

Then, mean load is to be calculated:

$$F_m = f_m(F_1 + F_2) = 0.79 \cdot 35 = 27.65 \text{ kN}$$

We further use the equation:

$$L_{10h} = \frac{16.666}{n} (C/P)^{p}$$
, p = 10/3 for roller bearings.

$$C = P = \sqrt[10/3]{\frac{n \, L_{10h}}{16\,666}} = 27,65 = \sqrt[10/3]{\frac{3\,000 \cdot 20\,000}{16\,666}} = 322,54 \, kN$$

From the bearing table, page 246, we find out that the bearings NU420 or NU2224MA are proper.

Example no. 3

Operating conditions

A deep groove ball bearing, single row, 6312, mounted in the gearbox of a vehicle is to operate under the following conditions:

Operating conditions	1	2	3	
The fraction of operating time in conditions i and q	0,2	0,3	0,5	
Speed, n (min ⁻¹)	400	800	1000	
Radial load, F _{ri} (kN)	14,32	7,613	3,57	
Axial load, Fai (kN)	4,76	2,36	1,18	

Problem to be solved

Which will be the rating life of this bearing (L10h, operating hours)?

Answer

In the bearing table, for the bearing 6312, $C_r = 81.8$ kN and Cor = 51,9 kN can be found.

$$0.5(d+D) = 0.5(60+130) = 95 \text{ mm}$$

From fig.3, fo = 13,14 can be determined.

For the operating conditions 1:

$$\frac{f_0 F_{a1}}{C_{0r}} = \frac{13,14 \cdot 4,726}{51,9} = 1,20 \text{ and corresponds to } e = 0,28,$$

$$\frac{F_{a1}}{F_{r1}} = \frac{4,726}{14,320} = 0,33 > e.$$

By insert, for e = 0,28 and normal radial clearance, from table 4,

$$X_1 = 0,58,$$
 $Y_1 = 1,56,$
 $X_2 = 0,56,$ $Y_2 = 1,81,$
 $X_3 = 0,56,$ $Y_3 = 2,10,$

The equivalent radial force in case i can be calculated using the equation:

$$P_i = X_i F_{ri} + Y_i F_{ai},$$

$$\begin{split} P_1 &= 0.56 \cdot 14,320 + 1,56 \cdot 4,726 = 15,39 \text{ kN}, \\ P_2 &= 0.56 \cdot 7,613 + 1,81 \cdot 2,360 = 8,53 \text{ kN}, \\ P_3 &= 0.56 \cdot 3,57 + 2,1 \cdot 1,18 = 4,48 \text{ kN}. \end{split}$$

$$P_3 = 0.56 \cdot 3.57 + 2.1 \cdot 1.18 = 4.48 \text{ kN}.$$

Number of bearing revolutions under steady load Fi will be:

$$N_i = n_i q_i L_{10h}; n_m = \sum_{i=1}^{n} n_i q_i$$

The bearing total number of revolutions can be calculated from:

$$N = \sum_{i=1}^{n} N_i = L_{10h} \sum_{i=1}^{n} n_i q_i$$

To calculate the equivalent mean dynamic load, the following equation on

$$P_{m} = \sqrt[3]{\frac{P_{1}^{3}n_{1} + P_{2}^{3}n_{2} + P_{3}^{3}n_{3}}{n_{1} + n_{2} + n_{3}}} =$$

$$= \sqrt[3]{\frac{P_1^3 n_1 q_1 L_{10h} + P_2^3 n_2 q_2 L_{10h} + P_3^3 n_3 q_3 L_{10h}}{n_1 q_1 L_{10h} + n_2 q_2 L_{10h} + n_3 q_3 L_{10h}}} =$$

$$= \sqrt[3]{\frac{P_1^3 n_1 q_1 + P_2^3 n_2 q_2 + P_3^3 n_3 q_3}{n_1 q_1 + n_2 q_2 + n_3 q_3}} =$$

$$= \sqrt[3]{\frac{15,39^3 \cdot 400 \cdot 0,2 + 8,53 \cdot 800 \cdot 0,3 + 4,48^3 \cdot 1000 \cdot 0,5}{400 \cdot 0,2 + 800 \cdot 0,3 + 1000 \cdot 0,5}} = 8,39 \text{ kN}$$

The rating life L_{10h} is to be calculated using the equation on page 19

$$L_{10h} = \frac{1000000}{60 \text{ n}} \left(\frac{C}{P}\right)^3$$

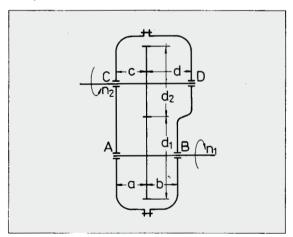
L10h = 20 437 operating hours

Example no. 4

Operating conditions

For the reverser shown in the adjoining figure, the following data are known:

N = 97 kW,Input power: Input shaft speed: $n_1 = 1000 \text{ r/min.}$ An axial load is intermittently


acting on the input shaft for a period of 5% of the operating period: Operating period: Constructive details:

 $F_a = 4 kN,$ $L_{10h} = 10 000$ operating hours, a = b = c = 38 mm, $d = 52 \, \text{mm},$ d₁ = 172 mm, d₂ = 148 mm.

Lubrication in oil bath

Problem to be solved

The type and dimensions of the bearing suitable for the bearing joints (A. B, C, D) of the reverser should be determined.

Answer

Output shaft speed:

$$n_2 = \frac{n_1 d_1}{d_2} = \frac{1000 \cdot 172}{148} = 1162 \text{ V/min}$$

Input moment can be calculated from:

$$M = \frac{9,74 \text{ N}}{0.00} = \frac{9,74 \cdot 97}{1,000} = 0,94 \text{ kN m}$$

Tangential force on the wheels 1 and 2:

$$T = \frac{M}{0.5 \text{ d}_1} = \frac{0.94}{0.5 \cdot 172 \cdot 10^{-3}} = 10.93 \text{ kN}$$

Rejecting force between wheels 1 and 2:

$$R = T tg\alpha = 10,93 \cdot tg 20^{\circ} = 3,97 kN$$

Loading force of the shafts 1, 2:

$$F = \sqrt{T^2 + R^2} = \sqrt{10.93^2 + 3.97^2} = 11.63 \text{ kN}.$$

Loading forces in bearing joints:

$$F_{rA} = F_{rB} = \frac{F}{2} = \frac{11,63}{2} = 5,82 \text{ kN},$$

$$\begin{split} F_{rC} &= \frac{F \, d}{c + d} = \frac{11,63 \cdot 52}{38 + 52} = 6,72 \text{ kN}, \\ F_{rD} &= \frac{F \, c}{c + d} = \frac{11,63 \cdot 38}{38 + 52} = 4,91 \text{ kN}. \end{split}$$

Cylindrical roller bearings in all bearing joints:

$$P = F_r$$

Minimum radial dynamic loads which are necessary for the bearings in the joints A, B, C, D can be calculated using the equation on page 19:

$$C_{rA} = C_{rB} = 5.82$$
 $\sqrt[10/3]{\frac{60 \cdot 10\ 000 \cdot 1\ 000}{406}} = 39.66\ kN,$

$$C_{TC} = 6,72$$
 $\sqrt[10/3]{\frac{60 \cdot 10\,000 \cdot 1\,162}{10^6}} = 47,91 \text{ kN,}$

$$C_{rD} = 4.91$$
 $\sqrt[10/3]{\frac{60 \cdot 10\ 000 \cdot 1\ 162}{10^6}} = 35\ kN.$

For the joints A, B and C a bearing NJ207E with C_{Γ} = 49,9 kN, $C_{O\Gamma}$ = 49,7 kN can be used.

For joint D, a bearing NJ206E with C_f = 39,7 kN, C_{0f} = 37,9 kN can be used. Maximum axial loads admitted by the bearings NJ207E and NJ206E respectively, can be calculated from:

$$F_{ap} = \frac{K_1 C_{0r} 10^4}{n(d+D)} + K_2 F_r$$

We select from table 5, pag. 228, $K_1 = 1.5$ şi $K_2 = 0.15$.

$$\begin{split} F_{apC} &= \frac{1,5 \cdot 49,7 \cdot 10^4}{1 \cdot 162(35 + 72)} - 0,15 \cdot 6,72 = 4,98 \text{ kN}, \\ F_{apD} &= \frac{1,5 \cdot 37,9 \cdot 10^4}{1 \cdot 162(35 + 72)} - 0,15 \cdot 4,91 = 3,83 \text{ kN}. \end{split}$$

One can notice that $F_{apD} < F_a$. The problem can be correctly solved by using the same bearing NJ207E also in joint D.

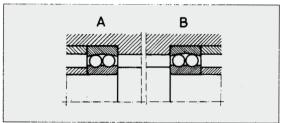
Example no. 5

Operating conditions

Loads in bearings:
$$\begin{aligned} & F_{rA} = 2\ 100\ N, \\ & F_{rB} = 3\ 200\ N, \\ & F_{a} = 400\ N. \end{aligned}$$

Angular deformation: $\varphi_A = \varphi_B = 2^\circ$

Shaft diameters: dA = dB = 70 mm


Housing maximum diameters: DAmax = DBmax = 140 mm

Shaft speed: n = 1 400 r/min

Requisite rating life: L10h = 20 000 h

Problem to be solved

Selecting and checking the bearings, in the figure below:

Answer

Due to the great angular deformations in bearing units, self-aligning ball bearings, small width series 1214, are to be selected, characteristics in the catalogue:

Equivalent load for each bearing is to be calculated:

For bearing unit A: FaA =

$$\frac{F_{aA}}{F_{rA}} = \frac{460}{2100} = 0,19 > e.$$

$$P_A = 0.65 F_{rA} + Y_2 F_{aA} = 0.65 \cdot 2 \cdot 100 + 5.6 \cdot 400 = 3 \cdot 525 N.$$

For bearing unit B: $P_{aB} = 0$,

$$P_B = F_{fB} = 3200 \text{ N}.$$

Since $P_A > P_B$, the bearing in the bearing unit A should be checked. Rating life, operating hours, can be calculated using the equation:

$$L_{10h} = \frac{1\ 000\ 000}{60\ n} \left(\frac{C_r}{P_A}\right)^3 = \frac{1\ 000\ 000}{60\cdot 1\ 400} \left(\frac{34\ 600}{3\ 525}\right)^3 = 11\ 258\ hours < L_{10h}$$

Other bearings should be selected, wide series 2214, with the characteristics in the catalogue.

$$\begin{array}{lll} d = 70 \text{ mm,} & C_{\Gamma} = 44 \ 200 \ N, \\ D = 125 \ mm, & e = 0.27, \\ B = 31 \ mm, & Y_1 = 2,3, \\ Y_2 = 3,6. \end{array}$$

Equivalent load is to be calculated:

for bearing unit A:
$$\frac{F_{aA}}{F_{rA}} = 0,19 < e,$$

$$P_{A} = F_{rA} + Y_{1} F_{aA} = 2 \ 100 + 2,3 \cdot 400 = 3 \ 020 \ N.$$

for bearing unit B:
$$F_{aB} = 0$$
, $P_B = F_{rB} = 3200 \text{ N}$.

in this case, $P_B > P_A$, then the bearing in bearing unit B should be checked:

$$L_{10h} = \frac{1\,000\,000}{60 \cdot 1\,400} \left(\frac{44\,200}{3\,200}\right)^3 = 31\,371 \text{ operating hours>requisite L}_{10h}$$

Example no. 6

Operating conditions

Loads in bearing units: $F_{\Gamma} = 1000 \text{ N},$ $F_{a} = 1800 \text{ N}.$

Shaft diameter: d = 30 mm

Shaft speed: n = 2 500 r/min

Requisite rating life: Lh = 15 000 operating hours.

Problem to be solved

Checking the angular ball bearing, double row, 3306.

Answer

The bearing 3306 is to be checked, characteristics in the catalogue:

$$\begin{array}{lll} d = 30 \text{ mm,} & C_f = 38\,000 \text{ N,} \\ D = 72 \text{ mm,} & C_{Of} = 24\,500 \text{ N,} \\ B = 30.2 \text{ mm,} & \end{array}$$

$$\alpha = 32^{\circ}$$
.

$$\begin{aligned} \frac{F_a}{F_r} &= \frac{1.800}{1.000} = 1,8 > 0.86, \\ P_r &= 0.62 \, F_r + 1.17 \, F_a = 0.62 \cdot 1.000 + 1.17 \cdot 1.800 = 2.726 \, N, \end{aligned}$$

$$L_{10h} = \frac{1 \cdot 10^6}{60 \text{ n}} \left(\frac{C_r}{P_r}\right)^3 = \frac{1 \cdot 10^6}{60 \cdot 2500} \left(\frac{38000}{2726}\right)^3 = 18058 \text{ hours} > 15000 \text{ hours}.$$

Example no. 7

Operating conditions

Loads in bearing units:

$$F_r = 7900 \text{ N},$$

 $F_a = 7100 \text{ N}.$

Shaft diameter: d = 60 mm

Shaft speed: n = 4 500 r/min

Requisite rating life: L_{10h} = 6 000 operating hours

Problem to be solved

Checking the arrangement; four-point contact bearing and cylindrical roller bearing

Answer

The bearing QJ212, characteristics in the catalogue, is to be checked under a pure axial load:

$$d = 60 \text{ mm}, \qquad C_{\Gamma} = 92\,300 \text{ N}, \\ D = 110 \text{ mm}, \qquad C_{0\Gamma} = 71\,000 \text{ N}, \\ B = 22 \text{ mm}.$$

$$F_r = 0$$

$$P_a = 1,07 F_a = 1,07 \cdot 7100 = 7597 N$$

$$L_{10h} = \frac{1 \cdot 10^6}{60 \cdot 4500} \left(\frac{92300}{7597} \right)^3 = 6642 \text{ hours} > 6000 \text{ hours}.$$

The bearing NU212E, characteristics in the catalogue, is to be checked under a pure radial load:

$$\begin{array}{lll} d = 60 \ mm, & C_f = 93 \ 400 \ N, \\ D = 110 \ mm, & C_{Of} = 101 \ 000 \ N, \\ \end{array}$$

$$B = 22 \text{ mm}.$$

$$P_{\Gamma} = F_{\Gamma} = 7\,900\,N_{\bullet}$$

$$L_{10h} = \frac{1 \cdot 10^6}{60 \cdot 4500} \left(\frac{93400}{7900} \right)^3 = 6120 \text{ hours} > 6000 \text{ hours}.$$

Example no. 8

Determining the size of a needle cage and the thickness of the case-hardened layer for the adjoint parts for the operating conditions specified below:

	Fraction of operating time	Speed r/min	Radial load F _r (N)	
-	$m_1 = 0.2$ $m_2 = 0.025$ $m_3 = 0.015$ $m_4 = 0.76$	n ₁ = 300 n ₂ = 540 n ₃ = 720 n ₄ = 1 200	F _{r1} = 16 500 F _{r2} = 12 000 F _{r3} = 9 000 F _{r4} = 6 000	

Shaft diameter: $d_{a min} = 57 mm$ Material: case-hardening steel 13CrNi35X

Hardness: 60-62 HRC

Problem to be solved

The needle cage is to be selected so that the bearing rating life should be L10h = 8 000 hours.

Answei

We calculate the equivalent radial load (see page 24):

$$F_{\text{re}} = \frac{\frac{10\sqrt{3}}{\sqrt{\frac{m_1n_1F_{11}^{10/3} + m_2n_2F_{12}^{10/3} + m_3n_3F_{13}^{10/3} + m_4n_4F_{14}^{10/3}}}{\frac{m_1n_1 + m_2n_2 + m_3n_3 + m_4n_4}{\sqrt{\frac{0.2 \cdot 300 \cdot 16 \cdot 500^{10/3} + 0.025 \cdot 540 \cdot 12 \cdot 000^{10/3} + 0.015 \cdot 720 \cdot 9 \cdot 000^{10/3} + 0.76 \cdot 1 \cdot 200 \cdot 6 \cdot 000^{10/3}}}} = \frac{10\sqrt{3}}{\sqrt{\frac{0.2 \cdot 300 \cdot 16 \cdot 500^{10/3} + 0.025 \cdot 540 \cdot 12 \cdot 000^{10/3} + 0.015 \cdot 720 \cdot 9 \cdot 000^{10/3} + 0.76 \cdot 1 \cdot 200 \cdot 6 \cdot 000^{10/3} + 0.015 \cdot 720 \cdot 9 \cdot 000^{10/3} + 0.76 \cdot 1 \cdot 200 \cdot 6 \cdot 000^{10/3}}}}} = 8.214 \text{ N}$$

Equivalent medium speed:

 $n_0 = m_1n_1 + m_2n_2 + m_3n_3 + m_4n_4 = 0,2 \cdot 300 + 0,025 \cdot 540 + 0,015 \cdot 720 + 0,76 \cdot 1200 = 996 r/min$

$$L_{10} = \frac{60 \cdot L_h \cdot n_e}{10^6} = \frac{60 \cdot 8\ 000\ 996}{10^6} = 478\ \text{mil. revolutions}$$

Requisite dynamic load carrying capacity:

$$C_r = F_{re}$$
 $\sqrt[10/3]{L_{10}} = 8214$ $\sqrt[10/3]{478} = 52286 N$

From the bearings tables, a double row needle cage KK 576343 is to be selected:

$$F_W = 57 \text{ mm},$$

 $E_W = 63 \text{ mm},$
 $C_r = 55,55 \text{ kN}.$

Rolling element diameter is:
$$D_W = \frac{E_W - F_W}{2} = 3 \text{ mm}$$

in accordance with the specifications on page 288, the minimum thickness of the case-hardened layer (t_{min}) can be determined from the equation:

$$t_{min} = (0.07, ...0, 12)D_w = 0.3 ... 0.36 mm.$$

Example no. 9

Operating conditions

A drawn cup needle roller bearing, RHNA 253226, rotates at a speed n = 4 000 r/min on a shaft with surface hardness 50 HRC. Bearing rating life must be 1_{10h} = 5 000 operating hours.

Problem to be solved

What radial dynamic load can this bearing carry?

Answer

Basic radial dynamic load $C_f = 24.5$ kN found in the table, page 301, should be multiplied by 0,6, so that the shaft hardness of 50 HRC, table 1, could be considered.

$$C_r = 24.5 \cdot 0.6 = 14.7 \text{ kN}$$

On page 21, for 4 000 r/min and 5 000 hours it corresponds C/P = 8,39.

Admissible dynamic load will be:

$$P_{\Gamma} = \frac{C_{\Gamma}}{8.39} = \frac{14.7}{8.39} = 1.75 \text{ kN}.$$

Example no. 10

Operating conditions

Loads on bearings:

$$F_{rA} = F_{rB} = F_{r} = 300 \text{ N},$$
 $Ka = 200 \text{ N}.$

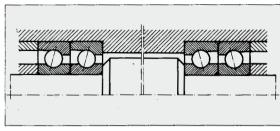
Shaft diameter: d = 20 mm

Shaft speed: n = 30 000 r/min

Lubrication: oil spot

Temperature: t = 180°C

Problem to be solved


From constructive considerations, the bearing 7204CTAP4 is to be selected. A set of 2 bearings in tandem arrangement, 7204CTAP4DT, should be mounted as in the figure below.

Example no. 11

Operating conditions

The bearing of an universal milling machine (see figure below) consist of a cylindrical roller bearing, double row, NN3020KMP41 type. For axial location, the thrust ball bearing, double row, 234420SP is used.

Α

The basic load rating is to be calculated and the speed limit is to be checked, considering that the axial load $K_{\mathbf{a}}$, may be oriented toward any of the two bearings.

Answer

The characteristics of the bearing pair 7204 CTAP4DT are:

 $B = 14 \text{ mm}, \quad n = 43 000 \text{ r/min (oil)}.$

The axial loads in bearings:

$$F_{aA} = F_{aB} = 1,14 F_{f} + K_{a} = 1,14 \cdot 300 + 200 = 542 N.$$

The factors for the axial load are to be selected from table 6, depending on the equation:

$$\frac{f_0 i F_a}{C_{0r}} = \frac{13,3 \cdot 2 \cdot 542}{18\,000} = 0,80$$

We find:

$$Y = 1,28$$

The equivalent load is to be calculatedz:

$$\frac{F_a}{F_r} = \frac{542}{300} = 1.81 > e,$$

$$P_f = 0.44 \cdot 300 + 1.28 \cdot 542 = 826 \text{ N}.$$

Requisite rating life is:

$$L_{10h} = \frac{1 \cdot 10^6}{60 \cdot 30\ 000} \left(\frac{25\ 300}{826}\right)^3 = 15\ 964\ hours$$

Adjusted rating life:

Lnah = ft L10h = 0,89 · 15 964 = 14 208 hours (ft, from table 2.9, page 27).

В

Permissible speed limit:

 $n_{adm} = f_1 n = 0.94 \cdot 43\ 000 = 40\ 400\ V_{min} > 30\ 000$ (f₁, according to the figure 13, page 36)

 $F_{a} \approx 4000 \text{ N},$ $F_{f} = 12000 \text{ N}.$ The loads in the bearing

Medium speed: nmed = 3 000 r/min.

Problem to be solved

Determining the rating life for the bearings in the locating ring.

Answer

Radial load Fr and Pr, respectively, are taken over by the cylindrical roller bearing. In accordance with the table

$$C_r = 152000 \text{ N}$$

The rating life of this bearing is:

$$L = \left(\frac{C_r}{P_r}\right)^{10/3} = \left(\frac{152\,000}{12\,000}\right)^{10/3} = 4\,737.5 \text{ mil. revolutions,}$$

$$L_{10h} = \frac{10^6 L_{10}}{60 n_{\text{med}}} = \frac{10^6 \cdot 4737,5}{60 \cdot 3000} = 26320 \text{ hours,}$$

this value correspond to table 2.4, page 21.

The axial load ${\sf F}_a$ and ${\sf P}_a$, respectively, are taken over by the thrust ball bearing. In accordance to table

$$C_a = 62\,000\,N$$

The bearing rating life is:

$$L = \left(\frac{C_a}{P_a}\right)^3 = \left(\frac{62\ 000}{4\ 000}\right)^3 = 3\ 724\ \text{mil. revolutions},$$

and the requisite rating life, in operating hours, is:

$$L_{10h} = \frac{10^6 L_{10}}{60 n} = \frac{10^6 \cdot 3724}{60 \cdot 3000} = 20690 \text{ hours,}$$

this value correspond to table 2.4, page 23.

The same results can be obtained using the table 2.2, page 20 and table 2.3, page 21, respectively:

for the bearing NN3020KMP41:

 $C_r/P_r = 12,66$ n = 3 000 r/min,

L10h = 26 244 hours.

for the bearing 234420SP:

n = 3 000 r/min.

 $C_a/P_a = 15,5,$ L10h = 20 833 hours.

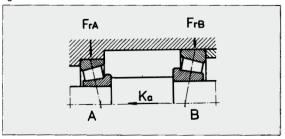
Example no. 12

Operating conditions

Loads in bearing units:

 $F_{rA} = 6500 \text{ N},$ $F_{rB} = 7200 \text{ N},$ $K_a = 2500 \text{ N},$

Shaft diameters


dA = 25 mm, dR = 30 mm

Shaft speed: n = 550 r/min

Requisite rating life: L_{10h} = 2 000 hours

Problem to be solved

Selecting the tapered roller bearings for the arrangement in the adjoining figure:

Answer

For constructive reasons, the following bearings are to be selected: - 30305A for the bearing unit A, with: $C_{\Gamma A}=43\,000\,N$, $e_A=0,3$, $Y_A=2$.

$$e_A = 0.3$$

 $Y_A = 2.$

- 32006XA for the bearing unit A, with: $C_{rB} = 34000 \text{ N}$,

We calculate:

$$\frac{F_{rA}}{Y_{A}} = \frac{6500}{2} = 3250$$

$$\frac{F_{\rm fB}}{Y_{\rm B}} = \frac{7\ 200}{1.4} = 5\ 143,$$

$$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B}$$
 si Ka ≥ 0 , it is the case 2a in table 4,

The total axial loads in the two bearing units can be calculated with the equation:

$$F_{aA} = F_{aB} + K_{a} = 2250 + 2500 = 4750 N,$$

$$F_{aB} = \frac{0.5 F_{rB}}{Y_{B}} = \frac{0.5 \cdot 7200}{1.4} = 2571 N.$$

Equivalent dynamic load on bearing unit should be calculated:

$$\frac{F_{AA}}{F_{rA}} = \frac{4750}{6500} = 0.73 > e_{A}$$
, bearing unit A:

$$\frac{F_{aB}}{F_{rB}} = \frac{2250}{7200} = 0.31 < e_{B}$$
, bearing unit B:

$$P_{rB} = F_{rB} = 7200 N.$$

The rating life of the two bearings can be determined considering the requisite rating life:

$$L_{10} = \frac{60 \text{ n } L_{10h}}{10^6} = \frac{60.550.2000}{10^6} = 66 \text{ mil. revolutions}$$

The requisite dynamic load should be determined:

$$C_{rA \text{ nec}} = P_A$$
 $\sqrt{\frac{10}{3}}$ $\sqrt{\frac{10}{66}} = 42525 \text{ N} < C_{rA}$

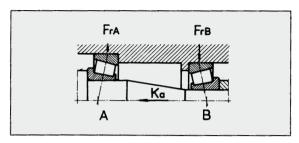
$$C_{rB \text{ nec}} = P_B$$
 $\sqrt{\frac{10}{10}} = 7200$ $\sqrt{\frac{3}{66}} = 25304 \text{ N} < C_{rB}$

The selected bearings correspond to the operating conditions.

Example no. 13

Operating conditions

Bearing unit A: bearing 30210A Bearing unit B: bearing 32208A.


Loads in bearing units:
$$\begin{aligned} F_{\Gamma A} &= 15\ 000\ N, \\ F_{\Gamma B} &= 11\ 000\ N, \\ K_{a} &= 3\ 000\ N. \end{aligned}$$

Shaft speed; n = 1 200 r/min.

Problem to be solved

To determine the minimum rating life for the arrangement in the figure

Answer

The characteristics of the used bearings

- 30210A:

 $C_f = 69700 \text{ N},$ e = 0,43,

 $Y_A = 1.4$. $C_f = 66 200 N$.

- 32208A: C_f = 66 e = 0.37

e = 0,37, Yp = 1.6.

We calculate:

$$\frac{F_rA}{V_A} = \frac{15\,000}{1.4} = 10\,714,$$

$$\frac{\text{FrB}}{\text{YB}} = \frac{11\ 000}{1,6} = 6\ 875.$$

Since:

$$\frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B}$$
 și

$$K_a > 0.5 \left(\frac{F_{rA}}{V_A} - \frac{F_{rB}}{V_B} \right) = 0.5 \left(\frac{15\,000}{1.4} - \frac{11\,000}{1.6} \right) = 1\,919\,N$$

it is the case 2b in table 4,

Total axial loads in the two bearing units can be determinated by the equations:

$$F_{aA} = F_{aB} + K_a = 3475,5 + 3000 = 6437 N,$$

$$F_{aB} = \frac{0.5 \, F_{rB}}{Y_B} = \frac{0.5 \cdot 11\, 000}{1.6} = 3\, 437 \, N.$$

Equivalent dynamic load on bearing unit should be calculated:

$$\frac{F_{aA}}{F_{rA}} = \frac{6.437}{15.000} = 0,429$$
 \checkmark **e**, thus for the bearing unit A:

$$P_A = F_{rA} = 15000 N.$$

$$\frac{F_{aB}}{F_{rB}} = \frac{3 \, 437}{11 \, 000} = 0.31 < e$$
, thus for the bearing unit B:

$$P_B = F_{rB} = 11\,000\,N$$

The rating lives are to be calculated:

$$\begin{split} L_{10A} &= \left(\frac{C_r}{P_A}\right)^{10 \, / \, 3} = \left(\frac{69 \, 700}{15 \, 000}\right)^{10 \, / \, 3} = 167,\!42 \, \text{mil. revolutions,} \\ L_{10B} &= \left(\frac{C_r}{P_B}\right)^{10 \, / \, 3} = \left(\frac{66 \, 200}{11 \, 000}\right)^{10 \, / \, 3} = 396,\!47 \, \text{mil. revolutions.} \end{split}$$

thus the requisite rating lives are::

$$\begin{split} L_{10hA} &= \frac{10^6 \, L_{10A}}{60 \, n} = \frac{10^6 \cdot 167,42}{60 \cdot 1 \, 200} = 2 \, 325,3 \, \text{hours,} \\ L_{10hB} &= \frac{10^6 \, L_{10B}}{60 \, n} = \frac{10^6 \cdot 396,47}{60 \cdot 1 \, 200} = 5 \, 506,5 \, \text{hours.} \end{split}$$

Then the minimum rating life of the arrangement is L = 2 325,3 hours.

Example no. 14

Operating conditions:

The bearing units for the drive pinion and the drive gear of a motor car are shown in fig. 1 and 2, respectively.

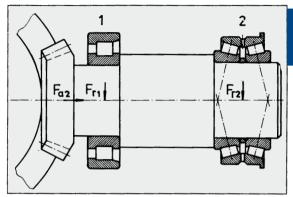


Fig. 1

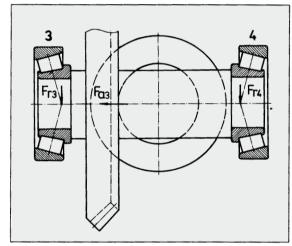


Fig. 2

The following data are known:

- the motor car has 4 velocity steps:

					_
Step	Step operating time	Gear ratio	Median (r/min) drive pinion	speed drive gear	
1	0,01	3,615	830	220	
2	0,14	2,263	1 300	350	
3	0,25	1,480	2 000	530	
4	0,60	1,032	3 000	800	

- gear ratio for the bevel gearing: 3,777:1

The loads on the bearings will be:

Step	1	2	3	4
Fr1 (N)	39 120	24 480	16 000	11 170
Fr2 (N)	16 110	10 080	6 590	4 600
Fa2 = Fa3(N)	23 710	14 830	9 700	6 770
Fr3 (N)	23 010	14 400	9 420	6 570
F _{r4} (N)	29 740	18 610	12 170	8 490

The bearing bores should meet the condition: $d_1 \ge 30$ mm, $d_2 \ge 25$ mm, $d_3 \ge 35$ mm, $d_4 \ge 35$ mm

Problem to be solved

To determine the dimensions of the bearings that should be selected so that a bearing rating life could be obtained as follows:

Bearing 1 2 3 4 Rating life (number of revolutions) 35·10⁶ 35·10⁶ 9,2·10⁶ 9,2·10⁶

Answer

For bearing 1:

Median dynamic load can be determined using the equation on page 25

$$P_{m} = \sqrt[10/3]{\frac{0,01 \cdot 830 \cdot 39 \cdot 120^{10/3} + 0,14 \cdot 1 \cdot 300 \cdot 24 \cdot 480^{10/3} + 0,25 \cdot 2 \cdot 000 \cdot 16 \cdot 000^{10/3} + 0,60 \cdot 3 \cdot 000 \cdot 11 \cdot 170^{10/3}}{0,01 \cdot 830 + 0,14 \cdot 1 \cdot 300 + 0,25 \cdot 2 \cdot 000 + 0,60 \cdot 3 \cdot 000}} = \sqrt[10/3]{\frac{2,02076 \cdot 10^{17}}{2.490.3}} = 14.886 \text{ N} \approx 15 \text{ kN}.$$

For bearing 2: Medium dynamic load can be determined using the equation on page 25

$$\frac{F_a}{F_r}$$
 = 1,47 > e = 0,83,

$$P_2 = 0.67 F_f + Y_2 F_a$$

Step	1	2	3	4	
P ₂ (N)	3 521	2 203	1 813	1 120	

For bearing 3: Median dynamic load can be determined using the equation on page 25

$$\frac{F_a}{F_r} = 1,03 > e = 0,37$$

$$P_3 = 0.4 F_f + Y_3 F_a$$
.

2 490,3

Step	1	2	3	4	
P ₃ (N)	4 714	2 949	1 929	1 346	

$$P_{\text{m}} = \sqrt[10/3]{\frac{0,01 \cdot 220 \cdot 47 \cdot 140^{10/3} + 0,14 \cdot 350 \cdot 29 \cdot 490^{10/3} + 0,25 \cdot 530 \cdot 19 \cdot 290^{10/3} + 0,60 \cdot 800 \cdot 13 \cdot 460^{10/3}}{0,01 \cdot 220 + 0,14 \cdot 350 + 0,25 \cdot 530 + 0,60 \cdot 800}} = \sqrt[10/3]{\frac{1,005 \cdot 10^{17}}{683,7}} = 17.949 \text{ N}$$

≈ 18 kN.

For bearing 4: $P_4 = F_{r4}$,

$$P_{m} = \sqrt[10/3]{\frac{0.01 \cdot 220 \cdot 29740^{10/3} + 0.14 \cdot 350 \cdot 18610^{10/3} + 0.25 \cdot 530 \cdot 12170^{10/3} + 0.60 \cdot 800 \cdot 8490^{10/3}}{0.01 \cdot 220 + 0.14 \cdot 350 + 0.25 \cdot 530 + 0.60 \cdot 800}} = \sqrt[10/3]{\frac{2.1648 \cdot 10^{17}}{683.5}} = 11325 \cdot 10^{10/3}$$

≈ 11,5 kN.

in order to obtain the requisite rating lives, it is necessary to satisfy the conditions in table 2.1, page 19:

Bearing	1	2	3	4	
C _r /P _r	2,91	2,91	2	2	
Cr requisite (kN)	44	44	36	23	

After consulting the bearing tables, a choice could be:

Bearing	1	2	3	4
Type	NF 5306HV	35305 R	30207 A	30207 A
C _r (kN)	55,1	73	50,5	50,5

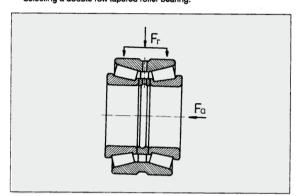
Note: The bearings 3 and 4 were chosen on constructive reasons.

Example no. 15

Operating conditions

 $F_a = 30\,000\,N.$ Loads in bearing units:

F_r = 60 000 N.


Shaft diameter: dmin = 160 mm

Shaft speed: n = 200 r/min.

Requisite rating life: Lh = 20 000 hours

Problem to be solved

Selecting a double row tapered roller bearing.

For constructive reasons, the bearing 35032, in the catalogue, with:

 $d = 160 \, \text{mm},$

C_r = 662 000 N, e = 0,37, Y₁ = 1,8, Y₂ = 2,7.

D = 240 mm, T = 115 mm,

Since:

$$\frac{F_a}{F_f} = \frac{30\ 000}{60\ 000} = 0.5 > e,$$

equivalent dynamic radial load will be calculated with the equation:

$$P_r = 0.67 F_r + Y_2 F_a = 0.67 \cdot 60 \cdot 000 + 2.7 \cdot 30 \cdot 000 = 121 \cdot 200 \text{ N}$$

The rating life of the bearing can be determined considering the requisite rating life:

$$L_{10} = \frac{60 \text{ n L}_{10h}}{10^6} = \frac{60 \cdot 200 \cdot 20000}{10^6} = 240 \text{ mil. revolutions}$$

Requisite dynamic load carrying capacity should be determined:

$$C_{r \, nec} = P_r$$
 $V_{L10} = 121 \, 200$ $V_{240} = 627 \, 431 \, N < C_r$.

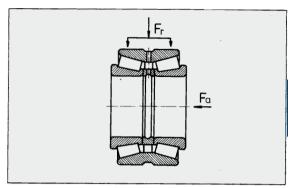
The selected bearings correspond to the operating conditions.

Example no. 16

Operating conditions:

Loads in bearing units:

 $F_a = 10\,000\,N$, $F_r = 30\,000\,N$.


Shaft speed: n = 600 r/min

Bearing operating temperature: t = 200°C

A bearing 35220 has been mounted.

Problem to be solved

To determine the rating life of this tapered roller bearing, double row.

Answer

For bearing 35220, in catalogue,

d = 100mm, D = 180 mm, Cr = 265 000 N.

T = 80 mm,

e = 0,42, Y₁ = 1,6, Y₂ = 2,4.

$$\frac{F_a}{F_f} = \frac{10\ 000}{30\ 000} = 0,33 < e,$$

equivalent dynamic radial load will be calculated using the equation:

$$P_r = F_r + Y_1 F_a = 30\,000 + 1.6 \cdot 10\,000 = 46\,000 \,\text{N}$$

Bearing rating life should be calculated:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^{10/3} = \left(\frac{265\ 000}{46\ 000}\right)^{10/3} = 342,74\ \text{mil. revolutions,}$$

Requisite rating life is calculated using the equation:

$$L_{10h} = f_1 \frac{10^6 L_{10}}{60 n} = 0.73 \frac{10^6 \cdot 342,74}{60 \cdot 600} = 6.950 \text{ hours.}$$

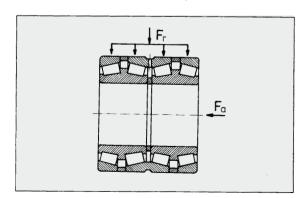
Since the bearing operates at a temperature of 200°C, the rating life is to be adjusted by the temperature factor:

ft = 0,73 (see table 2.9, page 27)

Example no. 17

Operating conditions

 $F_r = 450 \text{ kN},$ $F_a = 250 \text{ kN}.$ Loads in bearing units:


Shaft diameter: dmin = 240 mm

Shaft speed: n = 60 r/min

Requisite rating life: L_{10p} = 10 000 hours

Problem to be solved:

Selecting the four-row tapered roller bearing.

Answer

For constructive reasons, the bearing type T-36248 is selected. it has the following characteristics, as shown in the catalogue

$$C_{\Gamma} = 2.735 \text{ kN},$$

 $e = 0.46,$
 $Y_{1} = 1.5,$
 $Y_{2} = 2.2.$

Since:

$$\frac{F_a}{F_r} = \frac{250}{450} = 0,55 > e,$$

equivalent dynamic radial load can be determined using the equation:

$$P_r = 0.67 F_r + Y_2 F_a = 0.67 \cdot 450 + 2.2 \cdot 250 = 851.5 kN$$

The rating life of the bearing can be determined considering the requisite rating life:

$$L_{10} = \frac{60 \text{ n } L_{10h}}{10^6} = \frac{60 \cdot 60 \cdot 10000}{10^6} = 36 \text{ mil. revolutions.}$$

Requisite dynamic load carrying capacity should be determined:

$$C_{r \; nec} = P_r \; \begin{array}{c} 10 \, / \, 3 \, - \, \\ \sqrt[3]{L_{10}} = 851,5 \end{array} \; \begin{array}{c} 10 \, / \, 3 \, - \, \\ \sqrt[3]{36} = 2 \, 495 \; kN < C. \end{array}$$

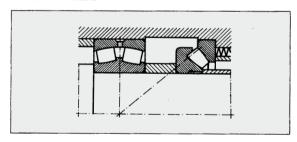
One can notice that the bearing has been properly selected for the operating conditions,

Example no. 18

Operating conditions

Loads in bearing units:

 $F_r = 123\,000\,N,$ $F_{a1} = 175\,000\,N,$ $F_{a2} = 19\,000\,N.$


Shaft diameter: dmin = 200 mm

Shaft speed: n = 500 r/min

Requisite rating life: L10h = 40 000 hours

Problem to be solved

For constructive reasons, the bearing 23140CAW33 (spherical roller bearing) and 29340 EM (spherical roller thrust bearing), mounted as in the figure below are to be related.

It is necessary to verify the arrangement, considering that the heavier axial load is caried by the spherical roller thrust bearing 29340EM and the lighter load (in the opposite direction) by the spherical roller bearing 23140CAW33.

Answer

The bearing 23140CAW33 characteristics in the catalogue, is to be verified under the combined load:

$$C_f = 137\,000\,N,$$

 $e = 0,35,$
 $Y1 = 1,9,$
 $Y2 = 2,9.$

$$Y1 = 1,9,$$

$$Y2 = 2,9.$$

$$\frac{\text{Fa2}}{\text{Fr}} = \frac{19\,000}{123\,000} = 0,154 < e,$$

$$P_r = F_r + Y_1 F_{a2} = 123000 + 1,9 \cdot 19000 = 159100 N,$$

$$L_{10h} = \frac{1 \cdot 10^6}{60 \cdot 500} \left(\frac{1370000}{159100} \right)^{10/3} = 43623 \text{ hours} > 40000 \text{ hours}.$$

The bearing 29340EM characteristics in the catalogue, is to be verified under the pure axial load:

$$C_a = 1500000 N,$$

 $F_f = 0,$
 $P_a = F_{a1} = 175000 N.$

$$L_{10h} = \frac{1 \cdot 10^{6}}{60 \cdot 500} \left(\frac{1500000}{175000} \right)^{10/3}$$

A similar result is obtained for the rating life of the two bearings, using the data in the table 2.3, page 21, respectively:

For the bearing 23140CAW33:

 $C_r/P_r = 8,61,$

n = 500 r/min, L10h = 43 800 hours.

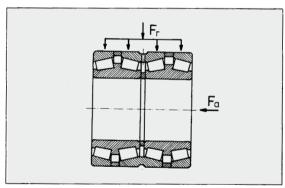
For the bearing 29340EM:

 $C_a/P_a = 8,57,$ n = 500 r/min,

L10h = 43 103 hours.

Example no. 19

Operating conditions


Loads in bearing units:

Fa = 20 kN

Shaft speed: n = 200 r/min

Problem to be solved

To determine the minimum rating life for the four row tapered bearing T-36428P6W28 type.

Answer

The bearing T-36428P6W28 has the following characteristics, see page 422 in the catalogue:

> $d = 139,7 \, mm$ D = 200,025 mm, T = 160,338 mm,

Cr = 767 kN. e = 0,34, Y₁ = 2,0, Y₂ = 3,0.

Since:

$$\frac{F_a}{F_c} = \frac{20}{70} = 0,285 < e$$

equivalent dynamic radial load can be calculated using the equation:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^{10/3} = \left(\frac{767}{110}\right)^{10/3} = 647,6 \text{ mil. revolutions,}$$

The minimum rating life will be:

$$L_{10h} = \frac{10^6 L}{60 n} = \frac{10^6 \cdot 647,6}{60 \cdot 200} = 54\,000 \text{ hours.}$$

Example no. 20

Operating conditions

The load in the crane clamp-hookFa = 1 200 000 N

Shaft diameter: d = 260 mm

Bearing speed: n = 0.

Problem to be solved

To select a thrust ball bearings.

Answer

Under static load, the selection of the bearing depends on the basic static load. From table 2.11, page 29, it is to be selected:

Since the bearing is only axially loaded, the equivalent load is:

$$P_a = F_a = 1200000 N$$

Requisite basic static load is:

Example no. 21

Operating conditions

Static axial load: Fa = 60 000 N, frequent shock loads

Shaft diameter: d = 40 mm

Bearing speed: n = 0

Problem to be solved

A cylindrical roller thrust bearing, single direction, is to be selected.

Answer

Under a static load, the selection of bearing depends on the basic static load

From table 2.11, page 29, it is to be selected:

$$s_0 = 1.6$$

Since the bearing is axially loaded, the equivalent load is:

Requisite basic static load is:

The bearing 81108, characteristics in the catalogue, is to be selected:

d = 40 mm, D = 60 mm,

H = 13 mm, C_{Oa} = 137 kN.

Coanec = 96 000 N < Coa = 137 000 N

11. Bearing mounting

Proper operation of rolling bearings is also determined by a proper selection of the solution of mounting and dismounting, considering the type and size of bearing, fit, adequate tools for these operations, performance etc.

As being precision components, rolling bearings should be handled carefully when storing or mounting. Thus, the following conditions should be observed:

- storing in their original package, on special shelves, in dry room, temperature of +18°C...+20°C, maximum moisture degree of 60%
- handling bearings while storing and mounting should be carefully done so that original package to be protected and not to be deteriorated.
- bearings should be unpacked only when they are to be mounted.

They shouldn't be washed if original package hasn't been destroyed.

- as the adjoint parts of bearings are accurate, without burrs, chips or hits, special care should be taken

Mounting of bearings with cylindrical bore

Bearings with cylindrical bore which are to have tight fit on shaft or in housing respectively, will be mounted by mechanical, thermic or hydraulic means.

The pressing force should be transmitted only by the ring which is pressed on the shaft or into the housing bore. Transmission by rolling bearings should be avoided as they can get deformed and premature damage can occur.

Special sleeves with one or two ribs, fig.11.1, a and b are used when mounting small and medium-sized bearings, which are to be mounted with transition fit. In case of self-aligning ball bearings or spherical roller thrust bearings, a plate is mounted for a proper location of the outer ring, as shown in fig. 11.2.

Mechanical or hydraulic presses are used as shown in fig. 11.3, in case of serial production so that force can be continuously and gradually applied.

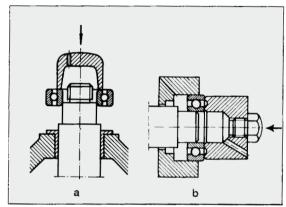


Fig. 11.1

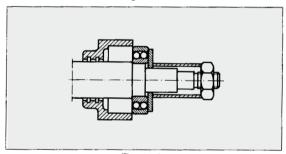


Fig. 11.2

For the mounting of bearings with clearance fit into the housing or on the shaft, the ring with transition or tight fit should be mounted first, after which the shaft-bearing assembly will be mounted into the housing as shown in fig.11.4, a and b.

In case of dismountable bearings, rings can be mounted separately - fig. 11.5, even if an tight fit is required for both rings.

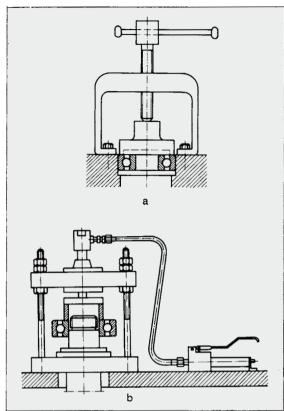


Fig. 11.3

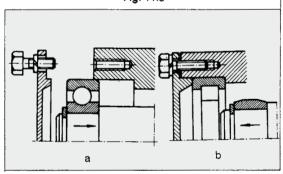


Fig. 11.4

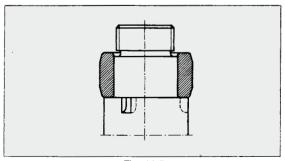


Fig. 11.5

The mounting of medium (d > 50 mm) and large-sized bearings with tight fit, requires much greater pressing forces. That's why in this case heating of bearings up to +80°C...+110°C should be used instead of pressing, excepting shielded bearings, 2Z (2ZR) type and sealed bearings, 2RS (2RSR) type.

For the bearings heating, oil bath, electric range, heating device with thermic ring or induction heating device etc. can be used as shown in fig.11.6, a-d.

The device with thermic ring - fig. 11.6 c consists of a split aluminium ring with three grips and cuts which make it be elastic.

Thermic ring bore diameter is equal to inner ring raceway diameter of dismountable bearings.

The ring outside diameter can be calculated using the equation:

$$D_{ex} = \sqrt{4 d_1^2 - 3 d_1^2}, mm,$$

where:

Dex = outside diameter of the thermic ring,

d₁ = diameter of the inner ring raceway, mm

d = bearing bore diameter, mm

The weight of the thermic ring is approximately equal to the weight of the bearing inner ring.

In case of large-sized cylindrical roller bearings, heating is done with induction devices. These devices consist of a coil inductor, thermal relays for temperature adjustment and timers. 380 V voltage and 50 - 60 Hz frequency inductors are used for bearings with bore diameter up to 200 mm. For larger-sized bearings, 20... 40 V voltage and 50 - 60 Hz inductors are used.

This device is schematically shown in fig. 11.6.d.

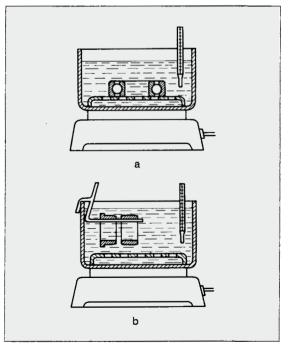


Fig. 11.6

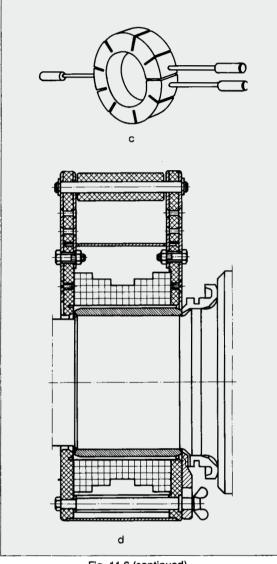


Fig. 11.6 (continued)

Mounting of bearings with tapered bore

Tapered bore bearings can be mounted directly on the shaft, on adapter sleeve or withdrawal sleeve. These bearings should always be mounted only with an tight fit. The tight fit can be done by an axial displacement of the bearing inner ring which is mounted directly on the tapered spindle of the shaft or by an axial displacement of the adapter or withdrawal sleeve.

The values of reduction in radial clearance are given in tables 11.1 and 11.2, as function of axial displacement on shaft of self-aligning ball bearings and spherical roller thrust bearings. After mounting the initial radial clearance is to be considered.

After mounting, radial clearance of radial and self-aligning ball bearings are in accordance with table 11.1.

The values of tightening are estimated by the values of the radial clearance reduction or of axial displacement. Axial displacement of the mounted bearing is measured by means of a limit gauge, as shown in fig. 11.7, a and b. The thickness of the limit gauge can be calculated from:

$$m = S - a$$

where:

m = thickness of the limit gauge, mm

S = distance initially measured, mm

a = axial displacement, from table 11.1, mm

Example A bearing 22252, d=260 mm, taper 1:12, distance s=10 mm, distance "a" from table 11.1 = 1,90 mm, m=10-1,9=8,10 mm

Small-sized bearings with tapered bore which are to be mounted directly on the shaft or with adapter or withdrawal sleeves can be axially displaced by means of a nut as shown in fig. 11.8, a, or by means of a special sleeve as in fig. 11.8 b,c.

Medium-sized bearings can be axially displaced by means of a special nut as shown in fig. 11.9 and some screws. Then, the nut is to be dismounted and replaced with a nut for axial fastening.

Values for self-aligning ball bearings radial clearance, after mounting

Values in mm									Table 11.1	
Bore diameter d		Reduction of radial clearance		Axial displacement "a", taper on tapered shaft		•	on tapered sleeve		Minimum radial clearance after mounting, in case of clearance group	
over	up to	low	high	low	high	low	high	normal	СЗ	
	20	0,003	0,010	0,22	0,23	0,24	0,25	0,01	0,02	
20	30	0,005	0,010	0,22	0,23	0,23	0,24	0,01	0,02	
30	40	0,009	0,015	0,30	0,30	0,32	0,32	0,01	0,02	
40	50	0,010	0,016	0,31	0,34	0,35	0,37	0,015	0,025	
50	65	0,012	0,018	0,39	0,41	0,40	0,42	0,015	0,03	
85	80	0,015	0,025	0,43	0,47	0,45	0,50	0,02	0,04	
80	100	0,022	0,030	0,54	0,60	0,56	0,62	0,02	0,04	
100	120	0,025	0,035	0,58	0,70	0,60	0,75	0,025	0,055	

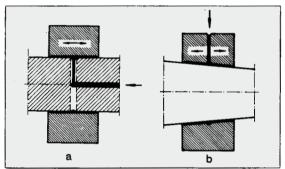


Fig. 11.11

To reduce the bearing displacing force in case of large -sized bearings, pressurized oil is to be introduced between the tapered surfaces of the shaft spindle, bearing and adapter or withdrawal sleeves, as shown in fig. 11.11a and b, by means of an oil pump - fig.11.10 or oil injector - fig. 11.12. One or more grooves should be provided as shown in fig. 11.13, a and b so that oil can be distributed between the mounting surfaces.

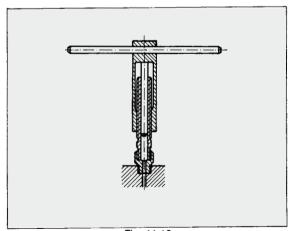


Fig. 11.12

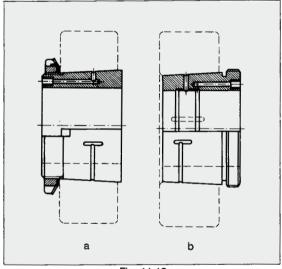


Fig. 11.13

Bearing dismounting

When bearings with tapered bore are to be dismounted from the shaft or housing, the succession of operations is inversely done than in case of mounting.

Thus, the assembly mounted with clearance fit or small tightening is to be dismounted first and then the parts mounted with greater tightening, as shown in fig. 11.14 and fig. 11.15.

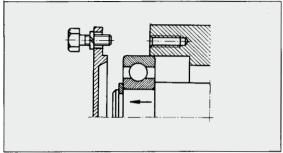


Fig. 11.14

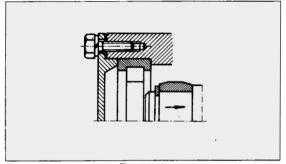


Fig. 11.15

To use mechanical or hydraulic instruments when dismounting bearings, a special design of the shaft and housing is required, as shown in fig. 11.16, a-b: withdrawal grooves (a), threaded bores (b), grooves for oil distribution, fig.11.13.

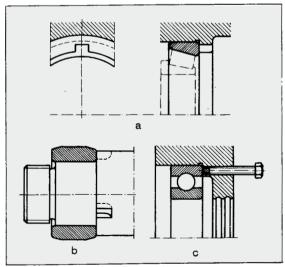
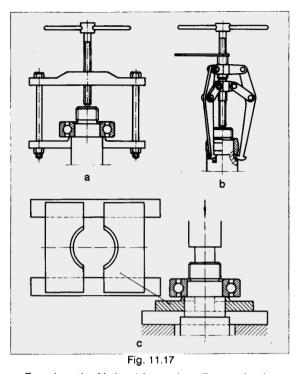



Fig. 11.16

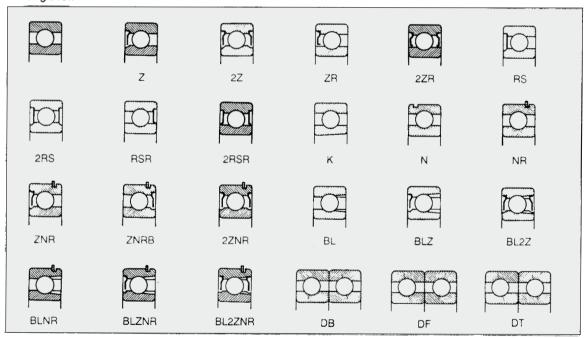
Medium and small-sized bearings which are mounted with an tight fit are dismounted from the shaft by means of a soft steel or copper mandrel or by means of mechanical or hydraulic presses - fig.11.17, a-c.

To reduce the frictional force when dismounting largesized bearings which were mounted on shaft with tight fit, pressurized oil should be introduced, as in case of mounting - fig.11.11.

To dismount bearings with tapered bore which were mounted directly on the shaft or bearings which were mounted with withdrawal or adapter sleeves, the nut axially fastened should be first stripped. Then, dismounting is to be done by light hammering on the inner ring by means of a soft steel or copper mandrel, as shown in fig. 11.18, a and b.

In case of bearings mounted with withdrawal sleeves, a nut is to be screwed up on the threaded part provided for this purpose, as shown in fig. 11.19, a and b.

Deep groove ball bearings

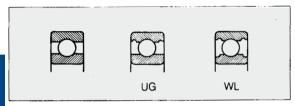

Single row deep groove ball bearings are manufactured by us in a varied range, both of standard design and various constructive versions.

Single row deep groove ball bearings can take double direction radial and axial loads and also allow good opera-

tion at high speeds.

For this reason, they can be widely used. Therefore, single row deep groove ball bearings are manufactured in many constructive versions as shown below.

- single row



- double row

Beside single row deep groove ball bearings of basic design, bearings with UG design, with grooves on the outer ring and WL design, with grooves on both rings are also used for the purpose of mounting seals or shields on bearings, 2ZR, 2RSR or 2RS type, as shown in the bellow figure.

Suffixes

C3

FΑ

PO

S1

- bearing with extended outer ring
- B - bearing with extended inner ring C2
 - radial clearance smaller than normal
 - radial clearance larger than normal
 - machined cage of steel or cast iron guided in the outer ring
- F2 - constructive modifications
- Κ - bearing with tapered bore
- М - machined cage of brass guided on the rolling elements
- machined cage of brass guided in the outer МΔ
- MB - machined cage of brass guided on the inner
 - circular groove for snap ring on the outer ring
- NR - circular groove on the outer ring and snap ring
 - normal tolerance class (it is not marked)
- **P6** - tolerance class more accurate than normal
- P63 - tolerance class P6 and radial clearance C3
- **P**5 - tolerance class more accurate than P6
- **P4** - tolerance class more accurate than P5
- R - rib on the outer ring
- RS - bearing with seal on one side, with friction on the inner ring recess
- bearing with special seal RSA
- 2RS - bearing with 2 seals, friction on the inner ring recess
- **RSR** - bearing with seal on one side, friction on the rib of the inner ring
- 2RSR - bearing with 2 seals, friction on the rib of the
- inner rina S₀ - bearing which can operate up to a tempera
 - ture of +150°C - bearing which can operate up to a tempera-
- ture of +200°C SP
 - snap ring, diameter series 0, 2, 3, 4
- SR - snap ring, dimension series 18 and 19
- **T30** - bearing which can operate up to a temperature of +300°C, radial clearance 0,20...0,25 mm; phosphate-treated surfaces
- TN polyamide cage
- bearing without cage
- Z - bearing with shield and recess on the inner
- Z - sealed bearing

- 27 - bearing with 2 shields and recess on the inner
- ZNRB - bearing with shield and snap ring on the same
- **7**R - bearing with shield, without recess on the inner ring
- 27R - bearing with 2 shields, without recess on the inner rina

Sealed and shielded deep groove ball bearings

We manufactures two versions of sealed and shielded bearings, namely:

- bearings RS and Z type, with recess on the inner ring for sealing or shielding.
- bearings RSR and ZR type, when shielding and sealing respectively are done directly on the outside surface of the inner ring.

In case of bearings with non-rubbing shields, there is a small interstice between the shield and the rib of the inner ring; in case of bearings with seals, the gasoline and oil resistant elastic rubber lip rubs on the groove on the inner ring side or directly on the outside surface.

Bearings sealed and shielded on both sides manufactured in series are delivered filled with lithium base grease and are used at temperatures between -30°C and +110°C, in accordance with the specifications in chapter 8. Bearings can also be greased with special greases, relubrication not being necessary. Washing or heating are not allowed before bearing mounting in the assembly.

Bearings with shields have been designed first of all for cases when the inner ring rotates.

When the outer ring rotates, the lubricant can flow out of the bearing at a certain speed. In such cases, we recommend you to consult our experts.

Deep groove ball bearings with snap ring groove

Single row deep groove ball bearings, with snap ring groove on the outer ring can be located in the housing with snap rings.

Because of their simple and space saving mounting, these bearings simplify the assembly design. The groove for the snap ring and the snap rings are in accordance with ISO 464, national standard STAS 6246 and tables 7 and 8 respectively.

Misalignments

Single row deep groove ball bearings have limited abilities to compensate for bearing errors of alignment. The permissible misalignment between the outer ring and the inner ring, which will not produce inadmissible high additional loads in the bearing, depends on the bearing size, operational radial clearance, inner bearing design and also on the magnitude of loads and moments acting upon the bearing.

Because of the complex relationship of these influence factors, definite and universally valid values of permissible misalignment cannot be determined.

Considering the above mentioned factors, under normal operation conditions the permissible misalignments are between 2 and 10 minutes of arc, depending on the bearing series and load.

For bearings with filling slots for balls, the values of permissible misalignment are between 2 and 5 minutes of arc

It should be considered that misalignments of bearing rings in operation produce a considerably higher noise.

Single row deep groove ball bearings with filling slots

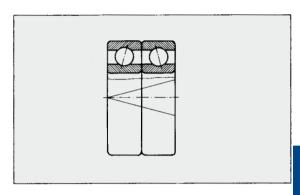
Single row deep groove ball bearings are also manufactured in a version with filling slot. These bearings have the prefix BL in the bearing basic designation.

These bearings can support heavier loads than those of the basic design since they have more balls. At the same time, the filling slot causes a decrease of axial load carrying capacity.

Paired single row deep groove ball bearings

If the basic load of a single bearing is inadequate or the shaft has to be axially located in both directions with a certain clearance, paired deep groove ball bearings are recommended to be used.

These bearings can be delivered matched in pairs in three versions, as follows: DT (tandem arrangement), DB (back-to-back arrangement) or DF (face-to-face arrangement). They can be delivered with axial clearance or preloaded. The values of clearance or preload are given in table 2.


The producer marks "V" on the bearing outside surface as shown in the next figure, so that paired bearings to be correctly mounted.

The speed limit of these bearings can be calculated multiplying the speed of the basic bearing by 0,8.

Paired bearings are packed and delivered in the same box.

Dimensions

The overall dimensions of single row deep groove ball

bearings are in accordance with the stipulations of ISO 15 and national standard 3041 respectively.

Tolerances

Single row deep groove ball bearings are generally manufactured to the normal tolerance class P0.

At request, they can also be manufactured to the tolerance classes P6, P5 or P4.

The values of tolerances are given in chapter 5 on page 37.

Radial and axial clearance

Single row deep groove ball bearings are generally manufactured with normal radial clearance. At request, they can also be manufactured with radial clearance different from the normal one, according to ISO 5753 and national standard 7115. The values of radial clearance are given in table 1.

Paired bearings can be manufactured with axial clearance (suffix A) or preloaded (suffix L). Values for axial clearance and preload are given in table 2.

Axial clearance of single row deep groove ball bearing is generally not standardized. It can be defined as the axial displacement of a ring in relation to the located one, under an alternative axial load.

The axial clearance depends on the value of the radial clearance, ball size and raceway radius. It can be calculated using the equation:

$$J_a = \sqrt{A D_w J_r - J_r^2}$$

where:

Ja = axial clearance, mm

A = bearing total curvature (raceways curvature,

 $f_e + f_{i-1}$

where $f_{e(i)} = R_{e(i)}/D_w$

Dw = ball diameter, mm

 J_r = radial clearance, mm

R_{e(i)} = raceway curvature

If a certain axial clearance is prescribed, this has to be measured and marked on the bearing by "A", followed by clearance actual value.

Radial clearance of single and double row deep groove ball bearings

Table 1

Bore Jiameter		Clearan C2	ce group syn	nbol for bear Normal	ings with cyli	indrical bore C3	1	Ć4		C5	
i		Clearan	ce group syn	ibol for bear	ings with tap	ered bore Normal		СЗ		C4	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
nm		μm									
2,5	10	0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
4	30	1	11	5	20	13	28	23	41	30	53
ю	40	1	11	6	20	15	33	28	46	40	64
ю.	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
15	80	1	15	10	30	25	51	46	71	65	105
30	100	1	18	12	36	30	58	53	84	75	120
100	120	2	20	15	41	36	66	61	97	90	140
20	140	2	23	18	48	41	81	71	114	105	160
40	160	2	23	18	53	46	91	81	130	120	180
60	180	2	25	20	61	53	102	91	147	135	200
80	200	2	30	25	71	63	117	107	163	150	230
900	225	2	35	25	85	75	140	125	195	175	265
25	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
80	315	2	55	40	115	100	190	175	270	245	370
115	355	3	60	45	125	110	210	195	300	275	410
55	400	3	70	55	145	130	240	225	340	315	460
100	450	3	80	60	170	150	270	250	380	350	510
150	500	3	90	70	190	170	300	280	420	390	570
i00	560	10	100	80	210	190	333	310	470	440	630
i60	630	10	110	90	230	210	360	340	520	490	690
30	710	20	130	110	260	240	400	380	570	540	780
10	800	20	140	120	290	270	450	430	630	600	840
00	900	20	160	140	320	300	500	480	700	670	940
00	1 000	20	170	150	350	330	550	530	770	740	1 040
000	1 120	20	180	160	380	360	600	580	850	820	1 150
120	1 250	20	190	170	410	390	650	630	920	890	1 260
250	1 400	30	220	200	450	430	710	680	1100	980	1 380

Axial clearance and mounting preload of paired bearings series 60, 62, 63

Table 2

d	iemeter	(suffix	•	Prelos (suffix	(L)	
over	up to	min.	max.	60	g series 62	63
mm		μm		N		
_	10	15	35	30	30	-
10	18	20	40	50	50	100
18	30	25	45	100	100	100
30	50	35	55	100	100	200
50	80	40	70	200	200	350
80	120	50	80	300	400	600
120	180	60	100	500	700	900
180	250	70	110	800	1000	1200

Contact angle

Single row deep groove ball bearings can take over pure radial loads and also combined loads. In this case, the balls roll on the raceway under a contact angle α which depends on the bearing radial clearance, raceway radius and ball diameter.

The contact angle can be calculated from:

$$\alpha = \arccos\left(1 - \frac{J_r}{2A D_w}\right)$$

where

 $J_r = radial clearance, mm$

A = total bearing curvature (raceways curvature

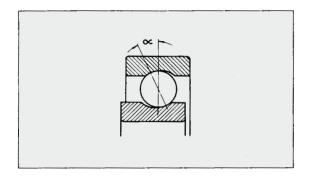
 $f_e + f_i - 1$), where $f_{e(i)} = R_{e(i)}/D_w$

Dw = ball diameter, mm

R_{e(i)} = raceway radius, mm

Contact angle α of ready-made bearings can be determined accurately enough with the following equation, if the number of revolutions n_c of the cage and the number of revolutions n_i of the inner ring, under a light axial load are considered:

$$n_{c} = 0.5n_{i} \left(1 - \frac{D_{w}}{D_{m}} \cos \alpha \right),$$


$$\alpha = \text{arc cos} \left[\frac{D_{m}}{D_{w}} \bigg(1 - \frac{n_{c}}{0.5 n_{i}} \bigg) \right]. \label{eq:alpha_eq}$$

where:

D_m = bearing mean diameter, mm

D_w = ball diameter, mm

Cages

Single row deep groove ball bearings are generally fitted with cages of pressed steel sheet.

Cages of glass fibre reinforced polyamide 6.6 are also suitable if the operating temperature doesn't exceed +120°C. They have reduced weight, low coefficient of friction and are noiseless in operation. Large-sized bearings are fitted with machined brass cages.

Cage design and some technical data are given in table 3.

Cage design and technical data

Table 3

Cage	Design bearing	cage	Application	Max. value D _m r	
Pressed sheet cage with fins			- General application - Bearings with d < 10 mm - Low frictional moment - Low inertia - Moderate speeds.	550×10 ³	450×10 ³
Pressed cage of riveted sheet			 General application Bearings with d > 10 mm Low frictional moment Low inertia Moderate speeds. 	1000×10 ³	550×10 ³
Pressed cage of sheet with spacer		of of	- General application - Bearing series BL 62, BL 63	700×10 ³	550×10 ³
Polyamide cage			General application Low frictional moment High speeds	1 400×10 ³	1 100×10
Brass machined cage			- General application - Bearings: 61836-618/1400, 61936-619/950, 16036-16072, 6030-60/630, 6230-6248, 6320-6330.	1 000×10 ³	800×10 ³

Bearing minimum radial load

A minimum load must be applied on a deep groove ball bearing so that they can operate correctly, especially in case of operating under heavy loads.

The forces of inertia which occur in bearing as well as the friction in lubricant influence negatively the operating conditions and can cause detrimental sliding movements between balls and raceways.

Minimum radial load depends on the bearing size, speed and lubricant viscosity at operating temperature. It can be roughly calculated from the equation:

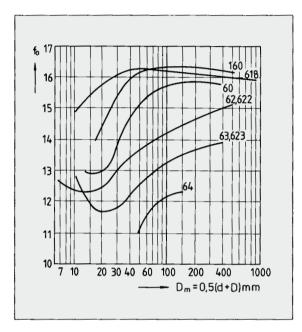
 $F_{r min} = 0.01C_r$, ($C_r = basic dynamic radial load$).

Equivalent dynamic radial load

Deep groove ball bearings can take also radial and axial combined loads.

For single row deep groove ball bearings, single or paired in tandem arrangement DT, equivalent dynamic radial load can be calculated using the equation:

$$P_r = F_r$$
, kN, when $F_a/F_r \le e$
 $P_r = X F_r + Y F_a$, kN, when $F_a/F_r > e$


In case of single row deep groove ball bearings with filling slot, it can be calculated from:

$$P_r = F_r + F_a$$
, kN,
in following conditions: $F_a/F_r < 0.6$ and $P < 0.5 C_0$

Bearings with filling slot are not recommended in case of axial loads F_a heavier than 0,6 F_r . In this case, deep groove ball bearings without filling slots are recommended to be used.

The greater the axial load, the greater the contact angle of these bearings.

Factors e, X and Y depend on the ratio f_0F_a/C_{0r} . Factor f_0 can be determined using the diagram in the bellow figure, as a function of dimension series and mean diameter (d+D)/2. F_a is the axial load and C_{0r} is the static basic load of the bearing.

The values of factors e, X, Y which depend on the bearing clearance can be determined from table 4, corresponding to the values of the ratio f_0F_a/C_{0r} . The values in table 4 apply to bearings mounted with normal fit, i.e. shafts manufactured to tolerance class j5 or k5 and housing in J6, respectively.

Calculation factors e, X and Y for deep groove ball bearings, single mounted or matched in tandem. Table 4

Normal radial clearance Radial clearance C3 Radial clearance C4 foFa/Cor X Υ Υ е e е 0,2 0,19 0.56 2,25 0.32 0,46 1,77 0,38 0,44 1,44 0,4 0,22 0,56 0,34 1,95 0,46 1,63 0.42 0,44 1,36 0,8 1,68 1,44 0,45 0,44 1,25 0,26 0.56 0,38 0.46 0.31 1,40 1,27 0,48 0.56 0,43 0.46 1,16 0.37 0.56 1.20 0,48 0,52 3 0.46 0.44 1,08 0,44 0,56 1,02 0,54 0,46 0,56 0,44

For bearings matched in DB or DT arrangement, equivalent dynamic radial load can be calculated using the equation:

$$\begin{split} P_r &= F_r + Y_1 \; F_a, \; kN, & \text{when } F_a \, / \, F_r \leq e, \\ P_r &= 0.75 \; F_r + Y_2 \; F_a, \, kN, \; \text{when } F_a \, / \, F_r > e. \end{split}$$

The values of factors e, Y_1 and Y_2 , as functions of ratio F_a/C_{0r} are given in table 5.

Calculation factors e,Y₁,Y₂ for DB and DF arrangements Table 5

Fa/Cor	e	Y ₁	Y ₂	1
0,03	0,32	2	2,8	
0,10	0,4	1,55	2,2	
0,03 0,10 0,25	0,47	3	1,65	J

Equivalent static radial load

For single row deep groove ball bearings, single or matched in tandem (DT), equivalent static radial load can be calculated using the equations:

$$P_0 = F_r$$
, kN, when $F_a/F_r \le 0.8$
 $P_0 = 0.6 F_r + 0.5 F_a$, kN, when $F_a/F_r > 0.8$

For single row deep groove ball bearings with filling slot, it can be calculated using the equation:

$$P_0 = F_r + 0.5 F_a$$
, kN, on the condition that $F_a/F_r < 0.6$

For bearings matched in DB or DF arrangement, it can be calculated from:

$$P_0 = F_r + 1.7 F_a, kN$$

Axial load

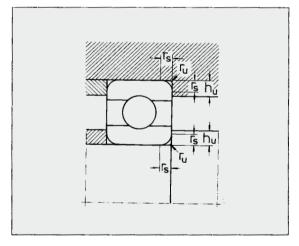
If single row deep groove ball bearings are purely axial loaded, the axial load should not exceed 0,5 C_{0r} . In case of small-sized bearings and bearings of light series (diameter series 8, 9, 0 and 1), the axial load should not exceed 0,25 C_{0r} .

Heavy axial loads cause a significant decrease of bearing rating life. In such cases, we recommend you to consult our experts.

Abutment dimensions

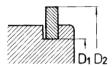
For a proper location of bearing rings on the shaft shoulder and housing shoulder, respectively, maximum shaft (housing) connection radius $r_{u \text{ max}}$ should be less than minimum bearing mounting chamfer $r_{s \text{ min}}$.

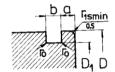
The shoulder should have the proper height corresponding to maximum bearing mounting chamfer.


The values of the connection radius (ru) and support

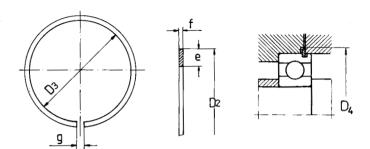
shoulder height (h_u) as functions of mounting chamfers are given in table 6 and are in accordance with national standard.

Abutment dimensions


Table 6


rs min.	ru max.	h _u min. Bearing se 618,619, 160	ries 161,60, 62,63	64
mm				
0,15	0,15	0,4	0,7	
0,2	0,20	0,7	0,9	-
0,3	0,30	1	1,2	_
0,6	0,60	1,6	2,1	-
1	1	2,3	2,8	_
1,1	1	3	3,5	4,5
1,5	1,5	3,5	4,5	5,5
2	2	4,4	5,5	6,5
2,1	2,1	5,1	6	7
3	2,5	6,2	7	8
4	3	7,3	8,5	10
5	4 5	9	10	12
6	5	11,5	13	15
7,5	6	14	-	-

Snap ring groove dimensions and tolerance

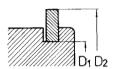


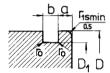
Snap ring groove

Outer diameter	D ₁		a Dimensi 18	ions series	19		b		го	
D	nom.	toler.	nom.	toler.	nom.	toler.	nom.	toler.	nom.	toler.
mm										
22 24 28 30 32	20,8 22,8 26,7 28,7 30,7	-0,3 -0,3 -0,3 -0,3 -0,3	- - - - 1,3	 - - - -0,15	1,05 1,05 1,3 1,3	-0,15 -0,15 -0,15 -0,15	0,8 0,8 0,95 0,95 0,95	+0,25 +0,25 +0,25 +0,25 +0,25	0,2 0,2 0,25 0,25 0,25	-0,1 -0,1 -0,12 -0,12 -0,12
34 37 39 40 42	32,7 35,7 37,7 38,7 40,7	-0,3 -0,3 -0,3 -0,3 -0,3	1,3 1,3 - 1,3 1,3	-0,15 -0,15 - -0,15 -0,15	- 1,7 1,7 - 1,7	- -0,15 -0,15 - -0,15	0,95 0,95 0,95 0,95 0,95	+0,25 +0,25 +0,25 +0,25 +0,25	0,25 0,25 0,25 0,25 0,25	-0,12 -0,12 -0,12 -0,12 -0,12
44 45 47 52 55	42,7 43,7 45,7 50,7 53,7	-0,3 -0,3 -0,3 -0,3 -0,3	1,3 1,3 1,3	-0,15 - -0,15 -0,15 -	- 1,7 1,7 1,7 1,7	- -0,15 -0,15 -0,15 -0,15	0,95 0,95 0,95 0,95 0,95	+0,25 +0,25 +0,25 +0,25 +0,25	0,25 0,25 0,25 0,25 0,25 0,25	-0,12 -0,12 -0,12 -0,12 -0,12
58 62 65 68 72	56,7 60,7 63,7 66,7 70,7	-0,3 -0,4 -0,4 -0,4 -0,4	1,3 - 1,3 - 1,7	-0,15 - -0,15 - -0,15	- 1,7 - 1,7 1,7	- -0,15 - -0,15 -0,15	0,95 0,95 0,95 0,95 0,95	+0,25 +0,25 +0,25 +0,25 +0,25	0,25 0,25 0,25 0,25 0,25 0,25	-0,12 -0,12 -0,12 -0,12 -0,12
78 80 85 90 95	76,2 77,9 82,9 87,9 92,9	-0,4 -0,4 -0,4 -0,4 -0,4	1,7 - 1,7 1,7 1,7	-0,15 - -0,15 -0,15 -0,15	2,1 2,1 2,1	- -0,2 -0,2 -0,2 -	1,3 1,3 1,3 1,3 1,3	+0,3 +0,3 +0,3 +0,3 +0,3	0,4 0,4 0,4 0,4 0,4	-0,2 -0,2 -0,2 -0,2 -0,2
100 105 110 115 120	97,9 102,6 107,6 112,6 117,6	-0,4 -0,5 -0,5 -0,5 -0,5	1,7 - 2,1 2,1 2,1	-0,15 - -0,2 -0,2 -0,2	2,5 2,5 2,5 - 3,3	-0,2 -0,2 -0,2 - -0,2	1,3 1,3 1,3 1,3 1,3	+0,3 +0,3 +0,3 +0,3 +0,3	0,4 0,4 0,4 0,4 0,4	-0,2 -0,2 -0,2 -0,2 -0,2
125 130 140 145 150	122,6 127,6 137,6 142,6 147,6	-0,5 -0,5 -0,5 -0,5 -0,5	2,1 2,1 2,5 - 2,5	-0,2 -0,2 -0,2 - -0,2	3,3 3,3 3,3 3,3 3,3	-0,2 -0,2 -0,2 -0,2 -0,2	1,3 1,3 1,9 1,9 1,9	+0,3 +0,3 +0,3 +0,3 +0,3	0,4 0,4 0,6 0,6 0,6	-0,2 -0,2 -0,2 -0,3 -0,3
165 175 180 190 200	161,8 171,8 176,8 186,8 196,8	-0,5 -0,5 -0,5 -0,5 -0,5	3,3 3,3 - 3,3 3,3	-0,2 -0,2 - -0,2 -0,2	3,7 3,7 3,7	-0,2 - -0,2 -0,2 -	1,9 1,9 1,9 1,9 1,9	+0,3 +0,3 +0,3 +0,3 +0,3	0,6 0,6 0,6 0,6 0,6	-0,3 -0,3 -0,3 -0,3 -0,3

The outer ring chamfer on the side of snap ring groove should allow a housing connection radius of: 0,3 mm for dimension series 18, up to D=78 mm included and for dimension series 19, up to D=47 mm included; 0,5 mm for dimension series 18, for D>78 mm and for dimension series 19, for D>47 mm

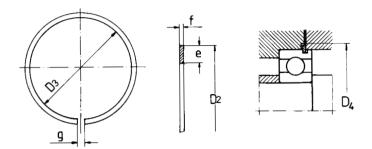
Snap ring


Table 7


Outer diameter	D ₂ 1)	D ₃ ²⁾		D4	е	f	g	г	Weight	Snap ring designation
D	max.	nom.	toler.	min.	nom.	nom.	nom.	min.		
mm									g	-
22	24,8	20,5	-0,3	25	2 2	0,7	2	0,2 0,2 0,2 0,2 0,2 0,2	0,812	SR22
24 28 30 32	26,8	22,5	-0,3	28 32	2	0,7	2 2 3 3 3	0,2	0,886 1,269	SR24
28	30,8	26,4	-0,3	32	2,05	0,85	3	0,2	1,269	SR28
30	32,8 34,8	28,3 30,3	-0,3 -0,3	34 36	2,05 2,05	0,85 0,85	3	0,2	1,39 1,483	SR30 SR32
32	34,0	30,3	-0,3	30	2,05	0,65	3		1,463	3H32
34 37	36,8	32,3	-0,3	38	2,05	0,85	3	0,2 0,2 0,2 0,2 0,2	1,577	SR34
37	39,8	35,3	-0,3	41	2,05	0,85	3	0,2	1,718	SR37
39	41,8	37,3	-0,3	43	2,05 2,05	0,85	3	0,2	1,811	SR39
40	42,8	38,3 40,3	-0,3	44	2,05	0,85	3 3 3 3	0,2	1,811 1,858 1,952	SR40
42	44,8	40,3	-0,4	46	2,05	0,85	3	0,2	1,952	SR42
44	46,8	42.3	-0,4	48	2,05	0,85	4	0.2	2.032	SR44
45	47,8	42,3 43,3	-0.4	49	2,05 2,05	0,85 0,85 0,85	4 4	0.2	2,032 2,079	SR45
47	49,8	45,3	-0.4	51	2.05	0.85	4	0.2	2,173	SR47
52	54,8	50,3	-0,4	56	2,05	0.85	4	0.2	2,407	SR52
55	57,8	53,3	-0,4	59	2,05	0,85	4	0,2 0,2 0,2 0,2 0,2	2,547	SR55
58	60,8	56.2	-0,6	62	2.05	0,85	4		2,688	SR58
62	64,8	56,3	-0,6 -0,6	66	2,05 2,05	0,85	4 4	0,2	2,938	SR62
65	67,8	60,2 63,2	-0,6 -0,6	60	2,05	0,85	7	0,2	3,081	SR65
68	70,8	66.2	-0,6	72	2,05	0,85	5	0,2	3,212	SR68
65 68 72	74,8	66,2 70,2	-0,6	69 72 76	2,05	0,85	4 5 5	0,2 0,2 0,2 0,2 0,2	3,403	SR72
							_			
78	82,7	75,7	-0,6	84	3,25	1,12	5	0,4	7,462 7,625 8,105	SR78
80	84,4	77,4	-0,6	86	3,25	1,12	ā	0,4	7,625	SR80
85	89,4	82,4	-0,6	91	3,25	1,12	5	0,4	8,105	SR85
90 95	94,4	87,4	~0,6	96 101	3,25 3,25 3,25 3,25 3,25	1,12	5 5 5 5	0,4 0,4	8,585 9,065	SR90 SR95
33	99,4	92,4	-0,6	101	3,25	1,12	5	0,4	9,000	9H95
100	104,4	97,4	-0,6	106	3,25	1,12	5	0,4	9,545	SR100
105	110 7	101.9	-0,8	112	3,25 4,04	1 12	5	0.4	12.653	SR105
110	115,7 120,7	106,9 111,9	-0,8	117	4.04	1,12 1,12 1,12	5 5 5 7	0,4 0,4	13,257	SR110
115	120,7	111,9	-0.8	122 127	4,04	1,12	5	0,4	13,861	SR115
120	125,7	116,9	-0,8	127	4,04	1,12	7	0,4	14,393	SR120
125	130,7	121 R	-0.8	132	4,04	1 12	7	0.4	15,164	SR125
130	135,7	121,8 126,8	-0,8	137	4,04	1,12 1,12	7	0,4 0,4	15,774	SR130
140	145,7	136,8	-0, 0	147	4,04	1,7	7	0,4	25,796	SR140
145	150,7	141,8	_i	152	4,04	1.7	7	0.6	26,722	SR145
150	155,7	146,8	-1 -1,2	157	4,04	1,7 1,7	7 7 7 7 7	0,6	27,648	SR150
100	474 E	161	10	170	4.05	4.7	7	0.6	25 00	CDICE
165	171,5	161 171	-1,2 -1,2	173	4,85	1,7 1,7	7 10	0,6 0,6 0,6 0,6	35,89 37,883	SR165 SR175
175 180	181,5 186,5	1/1	-1,2 -1,2	183 187	4,85	1,7	10 10	0,6	37,883 38,976	SR175 SR180
180 190	100,5	176	-1,2		4,85 4,85	1,7	10 10	0,6		
190 200	196,5 206,5	186 196	-1,4 -1,4	198 208	4,85 4,85	1,7 1,7	10	0,6 0,6	41,162 43,348	SR190 SR200
200	206,5	196	-1,4	208	4,80	1,7	10	U,b	43,348	5H200

D₂ dimension refer to snap ring
 D₃ represent dimension before mounting

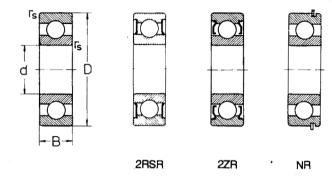
Snap ring groove dimensions and tolerance


Snap ring groove

Outer diameter	D ₁		a Dimensi 18	ons series	19		b		ro	
D	nom.	toler.	nom.	toler.	nom.	toler.	nom.	toler.	nom.	toler.
nm			41204	** ** ****						,
30 32 35 40	28,17 30,15 33,17 38,10 39,75	-0,25 -0,25 -0,25 -0,25 -0,25	2,06 2,06 2,06	-0,15 -0,15 -0,15	2,06 2,06 2,06 2,06 2,06	-0,15 -0,15 -0,15 -0,15 -0,15	1,35 1,35 1,35 1,35 1,35	+0,3 +0,3 +0,3 +0,3 +0,3	0,4 0,4 0,4 0,4 0,4	-0,2 -0,2 -0,2 -0,2 -0,2
47 52 55 62 68	44,60 49,73 52,60 59,61 64,82	-0,25 -0,25 -0,25 -0,5 -0,5	2,06 2,06 2,08 2,08 2,49	-0,15 -0,15 -0,2 -0,2 -0,2	2,46 2,46 3,28 3,28	-0,15 -0,15 -0,2 -0,2	1,35 1,35 1,35 1,90 1,90	+0,3 +0,3 +0,3 +0,3 +0,3	0,4 0,4 0,4 0,6 0,6	-0,2 -0,2 -0,2 -0,3 -0,3
72 75 80 85 90	68,81 71,83 76,81 81,81 86,79	-0,5 -0,5 -0,5 -0,5 -0,5	2,49 2,49 2,87	-0,2 -0,2 -0,2	3,28 3,28 3,28 3,28 3,28	-0,2 -0,2 -0,2 -0,2 -0,2	1,90 1,90 1,90 1,90 2,70	+0,3 +0,3 +0,3 +0,3 +0,3	0,6 0,6 0,6 0,6 0,6	-0,3 -0,3 -0,3 -0,3 -0,3
95 100 110 115 120	91,82 96,80 106,81 111,81 115,21	-0,5 -0,5 -0,5 -0,5 -0,5	2,87 2,87 2,87	-0,2 -0,2 -0,2	2,87 3,28 3,28 4,06	-0,2 -0,2 -0,2 -0,2	2,70 2,70 2,70 2,70 3,10	+0,3 +0,3 +0,3 +0,3 +0,3	0,6 0,6 0,6 0,6 0,6	-0,3 -0,3 -0,3 -0,3 -0,3
125 130 140 145 150	120,22 125,22 135,23 140,23 145,24	-0,5 -0,5 -0,5 -0,5 -0,5	2,87 2,87 3,71 3,71 3,71	-0,2 -0,2 -0,25 -0,25 -0,25	4,06 4,06 4,90 4,90	-0,2 -0,2 -0,25 -0,25	3,10 3,10 3,10 3,10 3,10	+0,3 +0,3 +0,3 +0,3 +0,3	0,6 0,6 0,6 0,6 0,6	-0,3 -0,3 -0,3 -0,3 -0,3
160 170 180 200	155,22 163,65 173,66 193,65	-0,5 -0,5 -0,5 -0,5	3,71 3,71 3,71 5,69	-0,25 -0,25 -0,25 -0,25	4,90 5,69 5,69 5,69	-0,25 -0,25 -0,25 -0,25	3,10 3,50 3,50 3,50	+0,3 +0,3 +0,3 +0,3	0,6 0,6 0,6 0,6	-0,3 -0,3 -0,3 -0,3

The outer ring chamfer on the side of snap ring groove should allow a housing connection radius of: 0,3 mm for dimension series 0, up to D=35 mm 0,5 mm for dimension series 0, for D>35 mm and for all diameters, for dimensions series 2, 3 and 4

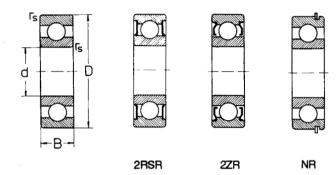
Table 8



Snap ring

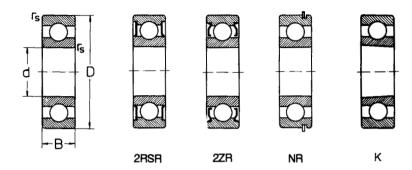
Outer diameter	D ₂ 1)	D3 ²⁾		D4	e	f	g	r	Weight	Snap ring designation
D	max.	nom.	toler.	min.	nom.	nom.	nom.	min.		
mm									g	_
30	34,7	27,9	-0,4	36	3,25	1,12	3	0,4	2,78	SP30
32	36,7	29,9	-0,4	38	3.25	1,12 1,12	3	0,4	2,98	SP32
35	39,7	32,9	-0,4	41	3,25	1,12	3	0.4	3,22	SP35
40	44,6	37,8	-0,4	46	3,25	1,12	3 3 3	0,4	3,60	SP40
42	46,3	39,5	-0,5	47	3,25	1,12	3	0,4	3,75	SP42
47	52,7	44,3	-0,5	54	4,04	1,12	4	0,4	5,30	SP47
52	57,9	49,4	-0,5	59 62	4,04	1,12	4	0.4	5,92	SP52
55	60,7	52,3	-0,5	62	4,04	1,12	4	0,4 0,4	6,17	SP55
62	67,7	59,0	-0,6	69	4,04	1,70	4	0,6	10,5	SP62
68	74,6	64,2	-0,6	69 76	4,85	1,70	4 5	0,6	12,6	SP68
72	78.6	68,2	-0,6	80	4,85	1,70	5	0,6	14,7	SP72
75	81,6	71,2	-0,6	83	4,85	1,70	5	0,6	15,3	SP75
80	86,6	76,2	-0,6	88	4,85	1,70	5	0,6	16,3	SP80
85	91,6	81,2	-0,6	93	4,85	1,70	5	0.6	17,5	SP85
90	96,5	86,2	-0,6	93 98	4,85	2,46	5 5 5 5 5	0,6 0,6	26,6	SP90
95	101,6	91,2	-0,6	103	4,85	2,46	5	0,6	28,2	SP95
100	106.5	96,2	-0,8	108	4,85	2,46	5	0,6	29,2	SP100
110	116,6	106,2	-0,8	118	4.85	2,46	5	0.6	32,8	SP110
115	121,6	111,2	-0,8	123	4,85	2,46	5 5 5 7	0,6 0,6	34,4	SP115
120	129,7	114,6	-0,8	131	7,21	2,82	7	0,6	60,6	SP120
125	134,7	119,6	-0,8	136	7,21	2,82	7	0,6	63,0	SP125
130	139,7	124,6	-0,8	141	7,21	2,82	7 7	0,6	65,6	SP130
140	149,7	134,6 139,6	-1,2	151	7,21	2,82	7	0,6	70,6	SP140
145	154,7	139,6	-1,2	156	7,21	2,82	7	0,6	73,0	SP145
150	159,7	144,5	-1,2	161	7,21	2,82	7 7	0,6	77,2	SP150
160	169,7	154,5	-1,2	172	7,21	2,82	7	0,6	81,0	SP160
170	182,9	162,9	-1,2	185	9,60	3.10	10	0.6		SP170
180	192,9	172,8	~1,2	195	9,60			0,6	128	SP180
200	212,9	192,8	-1.4							SP200
200	212,0	102,0	1,4	210	3,00	0,10	10	0,0	140	3F200
	169,7 182,9 192,9	154,5 162,9 172,8	-1,2 -1,2 -1,2	172 185	7,21 9,60	2,82 3,10 3,10 3,10	7	0,6 0,6 0,6 0,6 0,6	81,0 122	SP160 SP170 SP180

D₂ dimension refer to snap ring
 D₃ represent dimension before mounting



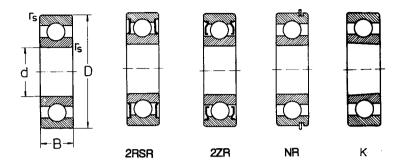
Dime	nsions			Basic load	radial	Speed lim	it	Designation bearing	Weight snap ring
d	D	В	r _s min.	dyn. Cr	stat. Cor	grease	oil	Downing	onep mg
mm				kN		min ⁻¹		-	kg
3	10 10	4	0,1 0,1	0,64 0,64	0,23 0,23	40 000 40 000	48 000	623 623-2ZR	0,002 0,002
4	13 13 16 16	5 5 5 5	0,2 0,2 0,3 0,3	1,3 1,3 1,2 1,2	0,49 0,49 0,5 0,5	38 000 38 000 34 000 34 000	45 000 40 000	624 624-2ZR 634 634-2ZR	0,003 0,003 0,005 0,005
5	11 16 16 16 19	3 5 5 6	0,1 0,3 0,3 0,3 0,3	0,64 1,9 1,9 1,9 1,7	0,26 0,69 0,69 0,69 0,72	55 000 34 000 34 000 22 000 32 000	65 000 40 000 38 000	618/5 625 625-2ZR 625-2RSR 635	0,001 0,005 0,005 0,005 0,005
	19	6	0,3	1,7	0,72	32 000		635-2ZR	0,009
6	13 15 19 19	3,5 5 6 6 6	0,1 0,2 0,3 0,3 0,3	1 1,45 2,2 2,2 2,2	0,44 0,6 0,89 0,89 0,89	50 000 47 000 32 000 32 000 22 000	59 000 56 000 38 000	618/6 619/6 626 626 – 2ZR 626 – 2RSR	0,002 0,004 0,008 0,008 0,008
7	14 17 19 19	3,5 5 6 6 6	0,1 0,3 0,3 0,3 0,3	0,96 2,1 2,25 2,25 2,25	0,4 0,8 0,89 0,89 0,89	47 000 44 000 32 000 32 000 22 000	56 000 51 000 38 000	618/7 619/7Y 607 607-2ZR 607-2RSR	0,002 0,005 0,008 0,008 0,008
	22 22 22	7 7 7	0,3 0,3 0,3	3,3 3,3 3,3	1,35 1,35 1,35	30 000 30 000 20 000	36 000	627 627-2ZR 627-2RSR	0,012 0,012 0,012
8	16 19 22 22 22	4 6 7 7 7	0,2 0,3 0,3 0,3 0,3	1,35 1,6 3,3 3,3 3,3	0,57 0,74 1,35 1,35 1,35	44 000 40 000 30 000 30 000 20 000	51 000 47 000 36 000	618/8 619/8 608 608 - 2ZR 608 - 2RSR	0,003 0,007 0,015 0,015 0,015
9	17 20 24 24 24	4 6 7 7 7	0,2 0,3 0,3 0,3 0,3	1,45 2,65 3,35 3,35 3,35	0,64 1,1 1,4 1,4 1,4	40 000 37 000 30 000 30 000 20 000	47 000 43 000 36 000	618/9 619/9 609 609-2ZR 609-2RSR	0,003 0,007 0,018 0,018 0,018
	26 26 26	8 8 8	0,3 0,3 0,3	4,55 4,55 4,55	1,95 1,95 1,95	28 000 26 000 18 000	34 000	629 629-2ZR 629-2RSR	0,020 0,020 0,020
10	19 22 26 26	5 6 8 8	0,3 0,3 0,3 0,3	1,7 1,95 4,55 4,55	0,83 0,75 1,95 1,95	37 000 34 000 28 000 28 000	43 000 41 000 34 000	61800 61900TN 6000TN 6000-2ZR	0,005 0,010 0,020 0,020

Dime	ensions			Basic	radial	Speed limit		Designation		Weight
d	D	В	r _s min.	load dyn. C _r	stat. Cor	grease	oil	bearing	snap ring	
mm				kN		min ⁻¹		-		kg
10	26 28 30 30 30	8 8 9 9	0,3 0,3 0,6 0,6 0,6	4,55 4,55 5,1 5,1 5,1	1,95 1,95 2,4 2,4 2,4	17 000 28 000 32 000 26 000 17 000	34 000 38 000	6000-2RSR 16100 6200TN 6200-2ZR 6200-2RSR		0,020 0,023 0,032 0,032 0,032
	35 35 35	11 11 11	0,6 0,6 0,6	8,1 8,1 8,1	3,45 3,45 3,45	20 000 20 000 14 000	26 000	6300 6300-2ZR 6300-2RSR		0,057 0,057 0,057
12	21 21 24 24 28	5 5 6 6 8	0,3 0,3 0,3 0,3 0,3	1,8 1,45 2,9 2,9 5,1	0,95 0,67 1,45 1,45 2,4	33 000 33 000 31 000 31 000 26 000	39 000 39 000 36 000 36 000 32 000	61801 61801NR 61901 61901NR 6001	SR21 SR24	0,006 0,006 0,011 0,011 0,022
	28 28 28 30 32	8 8 8 10	0,3 0,3 0,3 0,3 0,6	5,1 5,1 5,1 5,1 6,8	2,4 2,4 2,4 2,4 3,05	26 000 26 000 17 000 26 000 22 000	32 000 32 000 28 000	6001TN 6001-2ZR 6001-2RSR 16101 6201		0,022 0,022 0,022 0,026 0,037
	32 32 32 32 37	10 10 10 14 12	0,6 0,6 0,6 0,6 1	6,8 6,8 6,8 6,8 9,65	3,05 3,05 3,05 3,05 4,15	22 000 22 000 15 000 22 000 19 000	28 000 24 000	6201TN 6201-2ZR 6201-2RSR 62201-2RSR 6301		0,037 0,037 0,037 0,049 0,065
	37 37	12 12	1	9,65 9,65	4,15 4,15	19 000 12 000		6301 - 2ZR 6301 - 2RSR		0,065 0,065
15	24 24 28 28 30	5 7 7 8	0,3 0,3 0,3 0,3 0,3	2 2 4 4 4	1,25 1,25 2,05 2,05 2,05	28 000 28 000 26 000 26 000 22 000	33 000 33 000 30 000 30 000 28 000	61802 61802NR 61902 61902NR 16002	SR24 SR28	0,007 0,007 0,017 0,017 0,037
	32 32 32 35 35	9 9 9 11 11	0,3 0,3 0,3 0,6 0,6	5,6 5,6 5,6 7,65 7,65	2,85 2,85 2,85 3,75 3,75	22 000 22 000 14 000 19 000 19 000	28 000 24 000	6002 6002-2ZR 6002-2RSR 6202 6202-2ZR		0,031 0,031 0,031 0,046 0,046
	35 35 35 42 42	11 11 14 13 13	0,6 0,6 0,6 1 1	7,65 7,65 7,65 11,4 11,4	3,75 3,75 3,75 5,45 5,45	19 000 13 000 19 000 17 000 17 000	24 000 20 000	6202TN 6202-2RSR 62202-2RSR 6302 6302-2ZR		0,046 0,046 0,053 0,092 0,092
	42 42	13 17	1	11,4 11,4	5,45 5,45	11 000 17 000		6302-2RSR 62302-2RSR		0,092 0,099



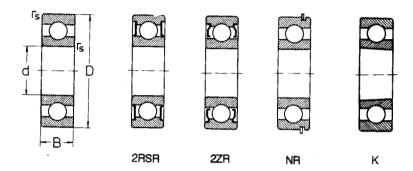
Dime	nsions			Basic load		Speed lim		Designation bearing	snap ring	Weight
d ———	D	В	r _s min.	dyn. Cr	stat. Cor	grease	oil			
mm				kN		min ⁻¹		-		kg
17	26 30 35 35 35	5 7 8 10 10	0,3 0,3 0,3 0,3 0,3	2,2 4,35 6 6 6	1,4 2,3 3,25 3,25 3,25 3,25	26 000 26 000 20 000 20 000 20 000	32 000 32 000 26 000 26 000	61803 61903 16003 6003 6003-2ZR		0,009 0,018 0,040 0,042 0,042
	35 40 40 40 40	10 12 12 12 12	0,3 0,6 0,6 0,6 0,6	6 9,55 9,55 9,55 9,55	3,25 4,8 4,8 4,8 4,8	12 000 17 000 17 000 17 000 11 000	20 000 20 000	6003-2RSR 6203 6203TN 6203-2ZR 6203-2RSR		0,042 0,070 0,070 0,070 0,070 0,070
	40 40 47 47 47	12 16 14 14	0,6 1 1 1	9,55 9,55 13,4 13,4 13,4	4,8 4,8 6,55 6,55 6,55	17 000 17 000 16 000 16 000 11 000	20 000 20 000 19 000	6203NR 62203-2RSR 6303 6303-2ZR 6303-2RSR	SP40	0,070 0,082 0,120 0,120 0,120
	47 62 62	19 17 17	1 1,1 1,1	13,4 22,5 22,5	6,55 11 11	16 000 12 000 12 000	15 000 15 000	62303-2RSR 6403 6403NR	SP62	0,145 0,285 0,285
20	32 32 37 37 42	7 7 9 9	0,3 0,3 0,3 0,3 0,3	3,45 3,45 6,55 6,55 7,95	2,25 2,25 3,65 3,65 4,5	20 000 21 000 19 000 19 000 17 000	26 000 25 000 23 000 23 000 20 000	61804 61804NR 61904 61904NR 16004	SR32 SR37	0,020 0,020 0,036 0,036 0,050
	42 42 42 47 47	12 12 12 14 14	0,6 0,6 0,6 1	9,4 9,4 9,4 12,8 12,8	5,05 5,05 5,05 6,65 6,65	17 000 17 000 11 000 15 000 15 000	20 000 18 000 18 000	6004 6004-2ZR 6004-2RSR 6204 6204TN		0,070 0,070 0,070 0,118 0,118
	47 47 47 47 52	14 14 14 18 15	1 1 1 1 1,1	12,8 12,8 12,8 12,8 15,9	6,65 6,65 6,65 6,65 7,9	15 000 10 000 15 000 15 000 13 000	18 000 16 000	6204-2ZR 6204-2RSR 6204NR 62204-2RSR 6304	SP47	0,118 0,118 0,118 0,131 0,158
	52 52 52 52 52	15 15 15 15 15	1,1 1,1 1,1 1,1 1,1	15,9 15,9 15,9 15,9 15,9	7,9 7,9 7,9 7,9 7,9	13 000 13 000 13 000 8 000 13 000	16 000 16 000	6304TN 6304MAP5 6304-2ZR 6304-2RSR 6304NR	SP52	0,158 0,158 0,158 0,158 0,158
	52 72	21 19	1.1 1,1	15,9 31	7,9 15,2	13 000 10 000	13 000	62304-2RSR 6404		0,197 0,420
22	50 50 50	14 14 14	1 1 1	12,9 12,9 12,9	6,8 6,8 6,8	15 000 15 000 15 000	17 000	62/22 62/22-2ZR 62/22-2RSR		0,118 0,118 0,118

Dime	ensions			Basic load	radial	Speed lim	it	Designation bearing	snap ring	Weight
d	D	В	r _s min.	dyn. Cr	stat. Cor	grease	oil			
mm				kN		min ⁻¹		-		kg
22	56 56 56	16 16 16	1,1 1,1 1,1	18,5 18,5 18,5	9,5 9,5 9,5	13 000 13 000 13 000	15 000	63/22 63/22-2ZR 63/22-2RSR		0,201 0,201 0,201
25	37 42 47 47 47	7 9 8 12 12	0,3 0,3 0,3 0,6 0,6	4,35 6,65 8,4 10,1 10,1	2,6 4,1 5,1 5,85 5,85	18 000 16 000 15 000 15 000 15 000	25 000 19 000 18 000 18 000	61805 61905 16005 6005TN 6005-2ZR		0,022 0,041 0,058 0,086 0,086
	47 52 52 52 52 52	12 15 15 15 15	0,6 1 1 1 1	10,1 14 14 14 14	5,85 7,85 7,85 7,85 7,85	9 500 12 000 12 000 8 000 12 000	15 000 15 000	6005-2RSR 6205 6205-2ZR 6205-2RSR 6205NR	SP52	0,086 0,142 0,142 0,142 0,142
	52 62 62 62 62	18 17 17 17 17	1 1,1 1,1 1,1 1,1	14 20,6 20,6 20,6 20,6	7,85 11,3 11,3 11,3 11,3	12 000 11 000 11 000 11 000 7 500	14 000 14 000	62205-2RSR 6305 6305MAP5 6305-2ZR 6305-2RSR		0,148 0,250 0,250 0,250 0,250
	62 62 80 80	17 24 21 21	1,1 1,1 1,5 1,5	20,6 20,6 37 37	11,3 11,3 18,8 18,8	11 000 11 000 9 000 9 000	14 000 11 000 11 000	6305NR 62305-2RSR 6405 6405NR	SP62 SP80	0,250 0,317 0,575 0,575
28	58 58 58 68 68	16 16 16 18 18	1 1 1 1,1 1,1	10,7 10,7 10,7 19,5 19,5	6,65 6,65 6,65 11,5 11,5	14 000 14 000 14 000 10 000 10 000	16 000 12 000	62/28 62/28-2ZR 62/28-2RSR 63/28 63/28-2ZR		0,173 0,173 0,173 0,328 0,328
	68	18	1,1	19,5	11,5	10 000		63/28-2RSR		0,328
30	42 42 47 47 55 55	7 7 9 9 9	0,3 0,3 0,3 0,3 3	4,4 4,4 7,8 7,8 11,2 13,2	2,9 2,9 4,7 4,7 7,35 8,25	15 000 15 000 14 000 14 000 12 000 12 000	18 000 18 000 17 000 17 000 15 000 15 000	61806 61806NR 61906 61906NR 16006 6006TN	SR42 SR47	0,027 0,027 0,045 0,045 0,087 0,129
	55 55 55 62 62	13 13 13 16 16	1 1 1 1	13,2 13,2 13,2 19,5 19,5	8,25 8,25 8,25 11,3 11,3	12 000 7 000 12 000 10 000 10 000	15 000 13 000	6006-2ZR 6006-2RSR 6006NR 6206 6206-2ZR	SP55	0,129 0,129 0,129 0,210 0,210
	62 62 62 72	16 16 20 19	1 1 1 1,1	19,5 19,5 19,5 29,9	11,3 11,3 11,3 15,8	7 500 10 000 10 000 9 000	10 000 11 000	6206-2RSR 6206NR 62206-2RSR 6306	SP62	0,210 0,210 0,236 0,371



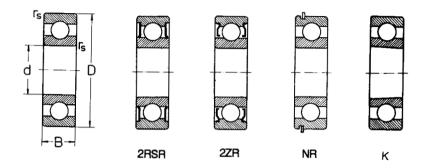
Dime	nsions			Basic load	radial	Speed lin	ılt	Designation bearing	snap ring	Weight
d	D	В	r _s min.	dyn. Cr	stat. Cor	grease	oil	Downing	Shap hing	
mm				kN		min ⁻¹		-		kg –
30	72 72 72 72 72 72	19 19 19 19 27	1,1 1,1 1,1 1,1 1,1	29,9 29,9 29,9 29,9 26,6	15,8 15,8 15,8 15,8 15,8 14,9	9 000 9 000 6 000 9 000 9 000	11 000 11 000	6306MAP5 6306-2ZR 6306-2RSR 6306NR 62306-2RSR	SP72	0,371 0,371 0,371 0,371 0,371 0,473
	90 90	23 23	1,5 1,5	47,3 47,3	24,5 24,5	8 500 8 500	10 000 10 000	6406 6406NR	SP90	0,785 0,785
32	65 65 65 75 75	17 17 17 20 20	1 1 1 1,1 1,1	23 23 23 30 30	13 13 13 16 16	10 000 10 000 10 000 9 000 9 000	12 000 11 000	62/32 62/32-2ZR 62/32-2RSR 63/32 63/32-2ZR		0,228 0,228 0,228 0,437 0,437
	75	20	1,1	30	16	9 000		63/32-2RSR		0,437
35	47 55 62 62 62	7 10 9 14 14	0,3 0,6 0,3 1	4 9,5 12,2 15,9 15,9	3,25 6,2 8,85 10,3 10,3	13 000 12 000 10 000 10 000 10 000	16 000 14 000 13 000 13 000	61807 61907 16007 6007 6007 – 2ZR		0,031 0,073 0,111 0,164 0,164
	62 62 72 72 72	14 14 17 17	1 1 1,1 1,1 1,1	15,9 15,9 25,7 25,7 25,7	10,3 10,3 15,4 15,4 15,4	7 000 10 000 9 000 9 000 9 000	13 000 11 000 11 000 11 000	6007-2RSR 6007NR 6207K 6207TN 6207MAP6	SP62	0,164 0,164 0,315 0,315 0,315
	72 72 72 72 72 72	17 17 17 17 17	1,1 1,1 1,1 1,1 1,1	25,7 25,7 25,7 25,7 25,7	15,4 15,4 15,4 15,4 15,4	9 000 9 000 9 000 6 000 9 000	11 000 11 000	6207P6 6207P5 6207-2ZR 6207-2RSR 6207NR	SP72	0,315 0,315 0,315 0,315 0,315
	72 72 72 80 80	17 17 23 21 21	1,1 1,1 1,1 1,5 1,5	25,7 25,7 25,7 33,5 33,5	15,4 15,4 15,4 18,3 18,3	9 000 9 000 9 000 8 500 8 500	11 000 11 000 10 000 10 000	6207NRP6 6207MA 62207-2RSR 6307 6307K	SP72	0,315 0,315 0,375 0,450 0,450
	80 80 80 80	21 21 21 21 21	1,5 1,5 1,5 1,5 1,5	33,5 33,5 33,5 33,5 33,5	18,3 18,3 18,3 18,3 18,3	8 500 8 500 8 500 8 500 5 600	10 000 10 000	6307P6 6307P5 6307 - 2ZR 6307 - 2ZRP5 6307 - 2RSR		0,450 0,450 0,450 0,450 0,450
	80 80 80 80 100	21 21 21 31 25	1,5 1,5 1,5 1,5 1,5	33,5 33,5 33,5 33,5 55,5	18,3 18,3 18,3 18,3 29,4	5 600 5 600 8 500 8 500 7 000	10 000 8 500	6307-2RSRP6 6307-2RSRP5 6307NR 62307-2RSR 6407	SP80	0,450 0,450 0,450 0,658 0,954

Dime	nsions			Basic load	radial	Speed lim	it	Designation bearing	snap ring	Weight
d	D	В	r _s min.	dyn. C _r	stat. C _{0r}	grease	oil	Downing	Shap hing	
mm			7	kN		min ⁻¹		-		kg
35	100	25	1,5	55,5	29,4	7 000	8 500	6407NR	SP100	0,954
40	52 52 62 62 68	7 7 12 12 9	0,3 0,3 0,6 0,6 0,3	4,5 4,5 14,5 14,5 13,3	4,05 4,05 10,2 10,2 9,8	11 000 12 000 11 000 11 000 9 500	14 000 14 000 13 000 13 000 12 000	61808P5 61808NR 61908 61908NR 16008	SR52 SR62	0,034 0,034 0,110 0,110 0,130
	68 68 68 68 80	15 15 15 15 18	1 1 1 1 1,1	16,8 16,8 16,8 16,8 32	11,6 11,6 11,6 11,6 17,8	9 500 9 500 6 000 9 500 8 500	12 000 12 000 10 000	6008 6008-2ZR 6008-2RSR 6008NR 6208	SP68	0,210 0,210 0,210 0,210 0,402
	80 80 80 80 80	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	32 32 32 32 32	17,8 17,8 17,8 17,8 17,8	8 500 8 500 8 500 8 500 8 500	10 000 10 000 10 000	6208K 6208P6 6208P5 6208-2ZR 6208-2ZRP5		0,402 0,402 0,402 0,402 0,402
	80 80 80 80 80	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	32 32 32 32 32	17,8 17,8 17,8 17,8 17,8	5 600 5 600 8 500 8 500 8 500	10 000 10 000 10 000	6208-2RSR 6208-2RSRP5 6208NR 6208MB 6208NMA	SP80	0,402 0,402 0,402 0,402 0,402
	80 90 90 90 90	23 23 23 23 23	1,1 1,5 1,5 1,5 1,5	32 40,7 40,7 40,7 40,7	19,8 24 24 24 24 24	8 500 7 500 7 500 7 500 7 500	9 000 9 000 9 000 9 000	62208-2RSR 6308 6308K 6308TN 6308P6		0,460 0,635 0,635 0,635 0,635
	90 90 90 90 90	23 23 23 23 23	1,5 1,5 1,5 1,5 1,5	40,7 40,7 40,7 40,7 40,7	24 24 24 24 24	7 500 7 500 7 500 5 000 7 500	9 000	6308P5 6308-2ZR 6308-2ZRP5 6308-2RSR 6308NMA		0,635 0,635 0,635 0,635 0,635
	90 90 110 110	23 33 27 27	1,5 1,5 2 2	40,7 40,7 64 64	24 24 35 35	7 500 7 500 6 700 6 700	9 000 7 500 8 000	6308NR 62308-2RSR 6408 6408NR	SP90 SP110	0,635 0,874 1,23 1,23
45	58 68 75 75 75	7 12 10 16 16	0,3 0,6 0,6 1	6,4 14 15,5 21 21	5,6 9,8 12,3 15 15	9 500 9 700 9 000 9 000 9 000	12 000 11 000 11 000 11 000 11 000	61809 61909 16009 6009 6009P5		0,043 0,120 0,170 0,261 0,261
	75 75 75	16 16 16	1 1 1	21 21 21	15 15 15	9 000 9 000 9 000	11 000	6009P4 6009-2ZR 6009-2ZRP4		0,261 0,261 0,261



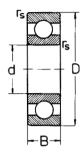
Dime	nsions			Basic load		Speed IIm		Designation bearing	snap ring	Weight
d	D	В	rs min.	dyn. C _r	stat. Cor	grease	oil			
mm				kN		min ⁻¹		-		kg
45	75 75 85 85 85	16 16 19 19	1 1 1,1 1,1 1,1	21 21 32,7 32,7 32,7	15 15 20,2 20,2 20,2 20,2	5 600 9 000 7 500 7 500 7 500	11 000 9 000 9 000 9 000	6009-2RSR 6009NR 6209 6209K 6209P6	SP75	0,261 0,261 0,414 0,414 0,414
	85 85 85 85 85	19 19 19 19	1,1 1,1 1,1 1,1 1,1	32,7 32,7 32,7 32,7 32,7	20,2 20,2 20,2 20,2 20,2	7 500 8 000 8 000 5 300 5 300	9 000	6209P5 6209-2ZR 6209-2ZRP5 6209-2RSR 6209-2RSRP6		0,414 0,414 0,414 0,414 0,414
	85 85 85 100 100	19 19 23 25 25	1,1 1,1 1,1 1,5 1,5	32,7 32,7 32,7 52,8 52,8	20,2 20,2 20,2 31,7 31,7	5 300 8 000 8 000 6 700 6 700	9 500 8 000 8 000	6209-2RSRP5 6209NR 62209-2RSR 6309 6309K	SP85	0,414 0,414 0,481 0,838 0,838
	100 100 100 100 100	25 25 25 25 25 25	1,5 1,5 1,5 1,5 1,5	52,8 52,8 52,8 52,8 52,8 52,8	31,7 31,7 31,7 31,7 31,7	6 700 6 700 6 700 6 700 6 700	8 000 8 000 8 000 8 000	6309MB 6309MAP6 6309P6 6309P5 63092ZR		0,838 0,838 0,838 0,838 0,838
	100 100 100 100 100	25 25 25 25 25 25	1,5 1,5 1,5 1,5 1,5	52,8 52,8 52,8 52,8 52,8 52,8	31,7 31,7 31,7 31,7 31,7	6 700 4 500 4 500 4 500 6 700	8 000	6309-2ZRP5 6309-2RSR 6309-2RSRP6 6309-2RSRP5 6309NR	SP100	0,838 0,838 0,838 0,838 0,838
	100 120 120	36 29 29	1,5 2 2	52,8 76,8 76,8	31,7 44,9 44,9	6 700 5 600 5 600	6 700 6 700	62309 - 2RSR 6409 6409NR	SP120	1,18 1,54 1,54
50	65 65 72 72 80	7 7 12 12 10	0,3 0,3 0,6 0,6 0,6	6,8 6,8 14,5 14,5 16,3	6,3 6,3 10,4 10,4 13,1	9 500 9 700 9 000 9 000 8 500	12 000 11 000 11 000 11 000 10 000	61810 61810NR 61910 61910NR 16010	SR65 SR72	0,057 0,057 0,130 0,130 0,188
	80 80 80 90	16 16 16 20 20	1 1 1 1,1 1,1	21,8 21,8 21,8 35,1 35,1	16,5 16,5 16,5 23,1 23,1	8 500 8 500 5 300 7 000 7 000	10 000 8 500 8 500	6010K 6010-2ZR 6010-2RSR 6210 6210K		0,260 0,260 0,260 0,460 0,460
	90 90 90 90 90	20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	35,1 35,1 35,1 35,1 35,1	23,1 23,1 23,1 23,1 23,1	7 000 7 000 7 000 7 000 7 000 7 000	8 500 8 500 8 500 8 500	6210M 6210MAP6 6210P6 6210P5 6210-2ZR		0,460 0,460 0,460 0,460 0,460

Dime	nsions			Basic load	radial	Speed lin	nit	Designation bearing	snap ring	Weight
d	D	В	r _s min.	dyn. C _r	stat. Cor	grease	oil	.		
mm				kN		min ⁻¹		_		kg
50	90 90 90 90 90	20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	35,1 35,1 35,1 35,1 35,1	23,1 23,1 23,1 23,1 23,1	7 000 4 500 4 500 4 500 7 000	8 500	6210-2ZRP5 6210-2RSR 6210-2RSRP6 6210-2RSRP5 6210NR	SP90	0,460 0,460 0,460 0,460 0,460
	90 110 110 110 110	23 27 27 27 27	1,1 2 2 2 2 2	35,1 61,8 61,8 61,8 61,8	23,1 37,9 37,9 37,9 37,9	7 000 6 000 6 000 6 000 6 000	7 000 7 000 7 000	62210-2RSR 6310 6310K 6310MAP6 6310-2ZR		0,514 1,06 1,06 1,06 1,06
	110 110 110 130 130	27 27 40 31 31	2 2 2,1 2,1	61,8 61,8 61,8 87,1 87,1	37,9 37,9 37,9 52 52	4 000 6 000 6 000 5 000 5 000	7 000 6 000 6 000	6310-2RSR 6310NR 62310-2RSR 6410 6410NR	SP110 SP130	1,06 1,06 1,65 1,89 1,89
55	72 90 90 90 90	9 11 18 18 18	0,3 0,6 1,1 1,1 1,1	9 19,3 28,3 28,3 28,3 28,3	8,5 16,3 21,2 21,2 21,2 21,2	8 500 7 500 7 500 7 500 4 500 7 500	10 000 9 000 9 000 9 000	61811 16011 6011MB 6011-2ZR 6011-2RSR 6011NR	SP90	0,083 0,26 0,39 0,39 0,39 0,39
	100 100 100 100 100	21 21 21 21 21	1,5 1,5 1,5 1,5 1,5	43,4 43,4 43,4 43,4 43,4	29,3 29,3 29,3 29,3 29,3	6 300 6 300 6 300 6 300 4 000	7 500 7 500 7 500	6211 6211K 6211MA 6211-2ZR 6211-2RSR		0,611 0,611 0,611 0,611 0,611
	100 120 120 120 120	21 29 29 29 29	1,5 2 2 2 2	43,4 71,5 71,5 71,5 71,5	29,3 44,6 44,6 44,6 44,6	6 300 5 300 5 300 5 300 5 300	7 500 6 300 6 300 6 300	6211NR 6311 6311K 6311MA 6311-2ZR	SP100	0,611 1,38 1,38 1,38 1,38
	120 120 140 140	29 29 33 33	2 2 2,1 2,1	71,5 71,5 100 100	44,6 44,6 62 62	3 600 5 300 4 800 4 800	6 300 5 600 5 600	6311-2RSR 6311NR 6411 6411NR	SP120 SP140	1,38 1,38 2,30 2,30
60	78 95 95 95 95	10 11 18 18 18	0,3 0,6 1,1 1,1 1,1	8,7 20 29,4 29,4 29,4	6,7 17,6 23,2 23,2 23,2	8 000 7 000 6 700 6 700 4 300	9 500 8 500 8 000	61812 16012 6012 6012-2ZR 6012-2RSR		0,120 0,280 0,420 0,420 0,420
	95 110 110 110	18 22 22 22 22	1,1 1,5 1,5 1,5	29,4 52,4 52,4 52,4	23,2 36 36 36	7 000 6 000 6 000 6 000	8 500 7 000 7 000 7 000	6012NR 6212 6212K 6212MA	SP95	0,420 0,780 0,780 0,780



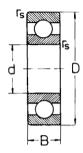
Dime	nsions			Basic	radiai	Speed lin	nit	Designation bearing	snap ring	Weight
d	D	В	r _s min.	dyn. Cr	stat. Cor	grease	oil	200 mg	Unap mig	
mm				kN		min ⁻¹		_		kg
60	110 110 110 130 130	22 22 22 31 31	1,5 1,5 1,5 2,1 2,1	52,4 52,4 52,4 81,8 81,8	36 36 36 51,9 51,9	6 000 4 000 6 000 5 000 5 000	7 000 6 000 6 000	6212-2ZR 6212-2RSR 6212NR 6312 6312K	SP110	0,780 0,780 0,780 1,72 1,72
	130 130 130 150 150	31 31 31 35 35	2,1 2,1 2,1 2,1 2,1	81,8 81,8 81,8 110 110	51,9 51,9 51,9 70,8 70,8	5 000 3 400 5 000 4 300 4 300	6 000 5 000 5 000	6312-2ZR 6312-2RSR 6312NR 6412 6412NR	SP130 SP150	1,72 1,72 1,72 2,76 2,76
62	110	22	1,5	47,5	28	6 000	7 000	62/62		0,600
65	85 100 100 100 100	10 11 18 18 18	0,6 0,6 1,1 1,1 1,1	12,2 22,9 30,5 30,5 30,5	12 19,6 25,2 25,2 25,2	7 000 6 300 6 300 6 300 4 000	8 500 7 500 7 500	61813 16013 6013K 6013-2ZR 6013-2RSR		0,130 0,300 0,440 0,440 0,440
	100 120 120 120 120	18 23 23 23 23	1,1 1,5 1,5 1,5 1,5	30,5 57,2 57,2 57,2 57,2	25,2 40 40 40 40	6 300 5 300 5 300 5 300 5 300	7 500 6 300 6 300 6 300	6013NR 6213 6213M 6213MA 6213-2ZR	SP100	0,440 0,995 0,995 0,995 0,995
	120 120 140 140 140	23 23 33 33 33	1,5 1,5 2,1 2,1 2,1	57,2 57,2 92,7 92,7 92,7	40 40 59,7 59,7 59,7	3 600 5 300 4 800 4 800 4 800	6 300 5 600 5 600 5 600	6213-2RSR 6213NR 6313 6313MA 6313MB	SP120	0,995 0,995 2,10 2,10 2,10
	140 140 140 160 160	33 33 33 37 37	2,1 2,1 2,1 2,1 2,1	92,7 92,7 92,7 118 118	59,7 59,7 59,7 79 79	4 800 3 000 4 800 4 000 4 000	5 600 4 809 4 800	6313-2ZR 6313-2RSR 6313NR 6413 6413NR	SP140 SP160	2,10 2,10 2,10 3,300 3,300
70	90 110 110 110 110	10 13 20 20 20	0,6 0,6 1,1 1,1	12,5 27,9 38,1 38,1 38,1	10 25 30,9 30,9 30,9	6 700 6 000 6 000 6 000 6 000	8 000 7 000 7 000 7 000	61814 16014 6014 6014MAP5 6014-2ZR		0,160 0,433 0,600 0,600 0,600
	110 110 125 125 125	20 20 24 24 24	1,1 1,1 1,5 1,5 1,5	38,1 38,1 62,2 62,2 62,2	30,9 30,9 44,1 44,1 44	3 600 6 000 5 000 5 000 5 000	7 000 6 000 6 000	6014-2RSR 6014NR 6214 6214MA 6214-2ZR	SP110	0,600 0,600 1,07 1,07 1,07
	125 125	24 24	1,5 1,5	62,2 62,2	44 44	3 400 5 000	6 000	6214-2RSR 6214NR	SP125	1,07 1,07

Dime	nsions			Basic load	radial	Speed limit		Designation	onen sina	Weight
d	D	В	rs min.	dyn. Cr	stat. C _{0r}	grease	oil	bearing	snap ring	
mm				kN		min ⁻¹		-		kg
70	150 150 150 150 150	35 35 35 35 35	2,1 2,1 2,1 2,1 2,1 2,1	104 104 104 104 104	68,1 68,1 68,1 68,1 68,1	4 500 4 500 4 500 4 500 2 800	5 300 5 300 5 300	6314 6314K 6314MAP6 6314-2ZR 6314-2RSR		2,50 2,50 2,50 2,50 2,50 2,50
	150 180	35 42	2,1 3	104 144	68,1 104	4 500 3 800	5 300 4 500	6314NR 6414	SP150	2,50 4,85
75	95 95 115 115 115	10 10 13 20 20	0,6 0,6 0,6 1,1 1,1	12,8 12,8 28,5 39,7 39,7	12,1 12,1 26,8 33,5 33,5	6 300 4 000 5 600 5 600 5 600	7 500 6 700 6 700 6 700	61815P5 61815-2RSR 16015 6015M 6015MAP5		0,160 0,160 0,460 0,640 0,640
	115 115 115 130 130	20 20 20 25 25	1,1 1,1 1,1 1,5 1,5	39,7 39,7 39,7 67,4 67,4	33,5 33,5 33,5 49,3 49,3	5 600 3 400 5 600 4 800 4 800	6 700 5 600 5 600	6015-2ZR 6015-2RSR 6015NR 6215 6215K	SP115	0,640 0,640 0,640 1,18 1,18
	130 130 130 160 160	25 25 25 37 37	1,5 1,5 1,5 2,1 2,1	67,4 67,4 67,4 113 113	49,3 49,3 49,3 77 77	4 800 3 200 4 800 4 000 4 000	5 600 4 800 4 800	6215-2ZR 6215-2RSR 6215NR 6315 6315MP6	SP130	1,18 1,18 1,18 3,03 3,03
	160 160 160 190	37 37 37 45	2,1 2,1 2,1 3	113 113 113 154	77 77 77 115	4 000 2 800 4 000 3 600	5 000 4 300	6315-2ZR 6315-2RSR 6315NR 6415	SP160	3,03 3,03 3,03 6,50
80	100 110 125 125 125	10 16 14 22 22	0,6 1 0,6 1,1 1,1	12,9 25,1 31,9 47,6 47,6	13,7 20,5 29,7 39,8 39,8	6 000 5 600 5 300 5 300 5 300	7 000 6 700 6 300 6 300	61816 61916 16016 6016MA 6016-2ZR		0,160 0,380 0,600 0,850 0,850
	125 125 140 140 140	22 22 26 26 26	1,1 1,1 2 2 2	47,6 47,6 72,7 72,7 72,7	39,8 39,8 53 53 53	3 600 5 300 4 500 4 500 4 500	6 300 5 300 5 300 5 300	6016-2RSR 6016NR 6216 6216K 6216MA	SP125	0,850 0,850 1,40 1,40 1,40
	140 140 140 170 170	26 26 26 39 39	2 2 2,1 2,1	72,7 72,7 72,7 123 123	53 53 53 86,5 86,5	4 500 3 000 4 500 3 800 3 800	5 300 4 500 4 500	6216-2ZR 6216-2RSR 6216NR 6316K 6316M	SP140	1,40 1,40 1,40 3,60 3,60
	170 170	39 39	2,1 2,1	123 123	86,5 86,5	3 800 3 800	4 500	6316-2ZR 6316NR	SP170	3,60 3,60



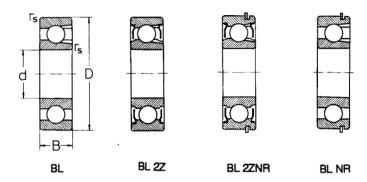
Dime	nsions			Basic load		Speed lim		Designation bearing	snap ring	Weight
d	O	В	r _s min.	dyn. Cr	stat. Cor	grease	oil			
mm				kN		min ⁻¹		-		kg
80	200	48	3	164	125	3 400	4 000	6416		7,50
85	110 130 130 130 130	13 14 22 22 22	1 1 1,1 1,1 1,1	19,3 33,8 49,5 49,5 49,5	20 33,5 43,1 43,1 43,1	5 300 5 000 5 000 5 000 3 400	6 300 6 000 6 000	61817 16017 6017 6017 – 2ZR 6017 – 2RSR		0,290 0,630 0,890 0,890 0,890
	130 150 150 150 150	22 28 28 28 28 28	1,1 2 2 2 2	49,5 84 84 84 84	43,1 61,9 61,9 61,9 61,9	5 000 4 300 4 300 4 300 4 300	6 000 5 000 5 000 5 000	6017NR 6217 6217K 6217MP6 6217-2ZR	SP130	0,890 1,80 1,80 1,80 1,80
	150 150 180 180 180	28 28 41 41 41	2 2 3 3 3	84 84 133 133	61,9 61,9 96,6 96,6 96,6	2 800 4 300 3 600 3 600 3 600	5 000 4 300 4 300 4 300	6217-2RSR 6217NR 6317 6317K 6317MA	SP150	1,80 1,80 4,20 4,20 4,20
	180 180 180 210	41 41 41 52	3 3 4	133 133 133 173	96,6 96,6 96,6 136	3 600 3 600 3 600 3 200	4 300 4 300 3 800	6317MB 6317-2ZR 6317NR 6417	SP180	4,20 4,20 4,20 9,00
90	115 140 140 140 140	13 16 24 24 24	1 1,5 1,5 1,5	19,6 41,9 58,2 58,2 58,2	20,4 40,4 49,7 49,7 49,7	5 300 4 500 4 500 4 500 4 500	6 300 5 300 5 300 5 300	61818 16018 6018MA 6018MP6 6018-2ZR		0,300 0,850 1,16 1,16 1,16
	140 140 160 160 160	24 24 30 30 30	1,5 1,5 2 2 2	58,2 58,2 96 96 96	49,7 49,7 71,5 71,5 71,5	3 000 4 500 3 800 3 800 3 800	5 600 4 500 4 500 4 500	6018-2RSR 6018NR 6218 6218K 6218MA	SP140	1,16 1,16 2,16 2,16 2,16 2,16
	160 160 160 190 190	30 30 30 43 43	2 2 2 3 3	96 96 96 143 143	71,5 71,5 71,5 107 107	3 800 3 800 3 800 3 400 3 400	4 500 4 500 4 000 4 000	6218MP6 6218-2ZR 6218NR 6318 6318K	SP160	2,16 2,16 2,16 4,90 4,90
	190 190 190 225	43 43 43 54	3 3 4	143 143 143 190	107 107 107 160	3 400 3 400 3 400 3 000	4 000 4 000 3 600	6318M 6318-2ZR 6318NR 6418	SP190	4,90 4,90 4,90 11,5
95	145 145 145 145	16 24 24 24	1 1,5 1,5 1,5	42,3 60,5 60,5 60,5	41,5 53,6 53,6 53,6	4 300 4 300 4 300 2 800	5 000 5 000	16019 6019 6019-2ZR 6019-2RSR		0,890 1,20 1,20 1,20

Dime	nsions			Basic load	radial	Speed lim	nit	Designation bearing	snap ring	Weight
d	D	В	r _s min.	dyn. Cr	stat. Cor	grease	oil	bearing	snap nng	
mm				kN		min ⁻¹		-		kg
95	145 170 170 200 200	24 32 32 45 45	1,5 2,1 2,1 3	60,5 109 109 153 153	53,6 81,9 81,9 118 118	4 300 3 600 3 600 3 200 3 200	5 000 4 300 4 300 3 800 3 800	6019NR 6219MBP6 6219NR 6319 6319MAP6	SP145 SP170	1,20 2,60 2,60 5,60 5,60
100	125 150 150 150 150	13 16 24 24 24	1 1 1,5 1,5 1,5	19,6 45 60,5 60,5 60,5	21,2 44 54 54 54	4 800 4 300 4 300 4 300 2 800	5 600 5 000 5 000	61820MAP5 16020 6020MAP6 6020-2ZR 6020-2RSR		0,320 0,910 1,25 1,25 1,25
	150 180 180 180 180	24 34 34 34 34	1,5 2,1 2,1 2,1 2,1	60,5 124 124 124 124	54 93 93 93 93	4 300 3 400 3 400 3 400 3 400	5 000 4 000 4 000 4 000 4 000	6020NR 6220 6220MA 6220MP6 6220NR	SP150 SP180	1,25 3,10 3,15 3,15 3,15
	215 215	47 47	3 3	173 173	140 140	3 000 3 000	3 600	6320-2ZR 6320MAP6		7,00 7,00
105	130 160 160 190 190	13 18 26 36 36	1 1 2 2,1 2,1	20,8 52 72,3 133 133	19,6 51 65,8 104 104	4 500 4 000 3 800 3 200 3 200	5 300 4 800 4 500 3 800 3 800	61821MAP5 16021 6021M 6221 6221MA		0,350 1,20 1,60 3,70 3,70
	225	49	3	184	153	2 800	3 400	6321MA		8,00
110	140 170 170 200 200	16 19 28 38 38	1 1 2 2,1 2,1	28,1 57,5 82 143 143	29 56,7 73 118 118	4 300 3 800 3 600 3 000 3 000	5 000 4 500 4 300 3 600 3 600	61822 16022 6022 6222 6222M		0,600 1,46 1,95 4,35 4,35
	200 240 240	38 50 50	2,1 3 3	143 203 203	118 178 178	3 000 2 600 2 600	3 600 3 200 3 200	6222NR 6322 6322MA	SP200	4,35 9,58 9,58
120	150 180 180 215 215	16 19 28 40 40	1 1 2 2,1 2,1	29,1 63,2 85 155 155	32,5 63,3 79,3 131 131	3 800 3 400 3 400 2 800 2 800	4 500 4 000 4 000 3 400 3 400	61824 16024 6024MP6 6224 6224MB		0,650 1,70 2,09 5,15 5,15
	215 215 215 260	40 40 40 55	2,1 2,1 2,1 3	155 155 155 212	131 131 131 190	2 800 2 800 2 800 2 400	3 400 3 400 3 000	6224MAP6 6224-2ZR 6224NR 6324MA	SP215	5,15 5,15 5,15 13,6
130	165 200	18 22	1,1 1,1	38 79	43 81	3 600 3 200	4 300 3 800	61826MAP5 16026		0,930 2,50



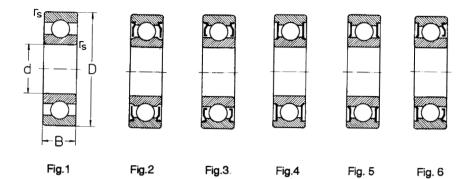
Dime	nsions			Basic load		Speed lim		Designation bearing	Weight snap ring
d	D	В	r _s min.	dyn. Cr	stat. Cor	grease	oil		
mm				kN		min ⁻¹		-	kg
130	200	33	2	106	101	3 000	3 600	6026	3,25
	230	40	3	167	146	2 600	3 200	6226	6,00
	230	40	3	167	146	2 600	3 200	6226M	6,00
	280	58	4	229	214	2 200	2 800	6326MA	17,0
140	175	18	1,1	39	46	3 400	4 000	61828MAP5	1,00
	210	22	1,1	80,5	86	2 800	3 400	16028	2,70
	210	33	2	110	109	2 800	3 400	6028MP6	3,35
	250	42	3	176	164	2 400	3 000	6228	7,50
	250	42	3	176	164	2 400	3 000	6228MA	7,50
	300	62	4	253	246	2 000	2 600	6328MA	21,0
150	190	20	1,1	48,8	61	3 000	3 600	61830	1,40
	225	24	1,1	92,3	98	2 600	3 200	16030	3,40
	225	35	2,1	125	126	2 600	3 200	6030MA	4,75
	270	45	3	176	170	2 000	2 600	6230MA	9,60
	320	65	4	275	284	1 900	2 400	6330MA	25,0
160	200	20	1,1	52	62	2 800	3 400	61832	1,49
	240	25	1,5	99,4	107	2 400	3 000	16032	3,60
	240	38	2,1	140	143	2 400	3 000	6032MA	5,85
	290	48	3	185	186	1 900	2 400	6232MA	15,0
170	215	22	1,1	61,8	73,5	2 600	3 200	61834P6	2,00
	260	28	1,5	118	127	2 200	2 800	16034	5,70
	260	42	2,1	168	172	2 200	2 800	6034MA	7,80
	310	52	4	212	224	1 900	2 400	6234MA	17,5
180	225	22	1,1	62,3	78,5	2 400	3 000	61836P5	2,00
	250	33	2	128	137	2 200	2 800	61936MA	4,90
	280	31	2	140	146	2 000	2 600	16036MA	7,00
	280	46	2,1	186	194	2 000	2 600	6036	10,5
	320	52	4	227	242	1 800	2 200	6236	18,5
190	240	24	1,5	74,1	92	2 200	2 800	61838	2,60
	290	31	2	148	162	2 000	2 600	16038	7,90
	290	46	2,1	194	210	2 000	2 600	6038MA	11,0
	290	46	2,1	194	210	2 000	2 600	6038MB	11,0
	290	46	2,1	194	210	2 000	2 600	6038MBP6	11,0
	290	46	2,1	194	210	2 000	2 600	6038MBP5	11,0
	340	55	4	255	278	1 700	2 000	6238MA	23,0
	340	55	4	255	278	1 700	2 000	6238MB	23,0
200	250	24	1,5	78	93	2 200	2 800	61840MB	2,70
	280	38	2,1	151	160	2 200	2 800	61940MB	7,25
	310	34	2	168	187	1 900	2 400	16040MBP6	9,00
	310	34	2	168	187	1 900	2 400	16040MBP5	9,00
	310	51	2,1	208	226	1 900	2 400	6040MA	13,5
	310	51	2,1	208	226	1 900	2 400	6040MB	13,5

Dime	nsions			Basic	radial	Speed lim	iit	Designation	enen rina	Weight
d	D	В.	rs min.	dyn. C _r	stat. C _{Or}	grease	oil	bearing	snap ring	
mm				kN		min ⁻¹		_		kg
200	310 360 360	51 58 58	2,1 4 4	208 280 280	226 314 314	1 900 1 700 1 700	2 400 2 000 2 000	6040MBP52 6240M 6240MB		13,5 28,0 27,0
220	270 300 300 340 340	24 38 38 37 56	1,5 2,1 2,1 2,1 3	80,6 152 152 191 247	101 178 178 226 291	1 900 1 900 1 900 1 800 1 800	2 400 2 400 2 400 2 200 2 200	61844MB 61944MB 61944MAP5 16044MB 6044MA		3,00 7,80 7,90 12,0 19,0
	340 400 400	56 65 65	3 4 4	247 311 311	291 376 376	1 800 1 500 1 500	2 200 1 800 1 800	6044MB 6244MB 6244MBP6		18,5 37,0 37,0
240	300 320 360 360 360	28 38 37 37 56	2 2,1 2,1 2,1 3	104 159 181 181 247	128 180 215 215 295	1 800 1 800 1 700 1 700 1 700	2 200 2 200 2 000 2 000 2 000	61848MB 61948MB 16048MAC4S1 16048MB 6048MB		4,50 8,45 14,5 14,0 19,5
	360 360 360 440	56 56 56 72	3 3 4	247 247 247 360	295 295 295 470	1 700 1 700 1 700 1 300	2 000 2 000 2 000 1 600	6048MAP6 6048MBP6 6048MP64SO 6248MB		20,0 19,5 20,0 51,0
260	320 360 400 400 400	28 46 44 65 65	2 2,1 3 4 4	106 213 235 294 294	138 263 298 373 373	1 700 1 600 1 500 1 500 1 500	2 000 1 900 1 800 1 800 1 800	61852MB 61952MB 16052MB 6052MB 6052MAP6		4,80 14,5 21,5 28,5 29,5
	400 480	65 80	4 5	294 335	373 594	1 500 1 100	1 800 1 400	6052MBP6 6252MB		28,5 65,5
280	350 350 350 380 420	33 33 46 44	2 2 2,1 3	134 134 134 218 252	177 177 177 282 360	1 600 1 600 1 600 1 500 1 400	1 900 1 900 1 900 1 800 1 700	61856MB 61856MBP6 61856MBP5 61956MB 16056MB		7,40 7,40 7,40 15,0 23,0
	420 500	65 80	4 5	325 429	422 604	1 400 1 100	1 700 1 400	6056MB 6256MB		31,0 71,0
300	380 380 380 420 420	38 38 38 56 72	2,1 2,1 2,1 3 3	164 164 164 257 323	213 213 213 340 437	1 400 1 400 1 400 1 300 1 200	1 700 1 700 1 700 1 600 1 500	61860MB 61860MBP6 61860MBP5 61960MB 62960MAP6		10,5 10,5 10,5 24,0 32,0
	460 460 460	50 74 74	4 4 4	285 357 357	403 492 492	1 200 1 200 1 200	1 500 1 500 1 500	16060MB 6060M 6060MA		32,0 43,5 44,0


Dime	nsions			Basic load		Speed lim		Designation bearing	Weight snap ring
d	D	В	rs min.	dyn. Cr	stat. Cor	grease	oil		
mm				kN		min ⁻¹		-	kg
300	460 460	74 74	4	357 357	492 492	1 200 1 200	1 500 1 500	6060MB 6060MBP6	43,0 43,0
320	400 440 480 480 480	38 56 50 74 74	2,1 3 4 4 4	170 275 293 363 363 363	220 388 430 512 512	1 300 1 200 1 100 1 100 1 100	1 600 1 500 1 400 1 400 1 400	61864MB 61964MB 16064MB 6064M 6064MB	11,0 25,5 34,0 46,5 46,0
340	420 460 520 520	38 56 57 82	4 2,1 3 4 5	178 272 345 437	512 240 390 515 663	1 200 1 100 1 000 1 000	1 500 1 400 1 300 1 300	61868MB 61968MB 16068MB 6068MB	40,0 11,5 26,5 45,0 62,0
360	440 480 540 540 540	38 56 57 82 82	2,1 3 4 5 5	192 280 346 421 421	268 413 530 648 648	1 100 1 100 1 000 1 000 1 000	1 400 1 400 1 300 1 300 1 300	61872MB 61972MB 16072MB 6072MB 6072MBP6	12,0 28,0 49,0 65,0 65,0
	540	82	5	421	648	1 000	1 300	6072MBP5	65,0
380	480 520 560	46 65 82	2,1 4 5	244 365 438	395 584 700	1 000 1 000 950	1 300 1 300 1 200	61876MB 61976MB 6076MB	20,0 39,0 67,5
400	500 500 540 600	46 46 65 90	2,1 2,1 4 5 5	261 261 362 493 493	396 396 585 809 809	1 000 1 000 950 900 900	1 300 1 300 1 200 1 100 1 100	61880MB 61880MBP6 61980MB 6080MA 6080MB	20,5 20,5 41,5 87,5 91,0
420	520 560 620	46 65 90	2,1 4 5	259 359 530	388 587 896	950 900 900	1 200 1 100 1 100	61884MB 61984MB 6084MB	21,5 43,0 91,5
440	540 65 0	46 94	2,1 6	256 530	403 939	900 850	1 100 1 000	61888MB 6088MAP6	22,5 105
460	580 620 680	56 74 100	3 4 6	275 425 563	600 740 995	900 850 800	1 100 1 000 950	61892MB 61992MB 6092MB	35,0 62,5 120
480	600 650 700	56 78 100	3 5 6	310 458 538	515 814 1 088	850 800 750	1 000 950 900	61896MB 61996MB 6096MB	36,5 74,0 125
500	620 720	56 100	3 6	333 627	580 1 171	800 750	950 900	618/500MA 60/500MB	37,5 135

Dimer	nsions		· · · ·	Basic I	adiai	Speed limit	ł	Designation bearing	snap ring	Weight
d	D	В	rs min.	dyn. C _r	stat. Cor	grease	oil	Doming	Shap hing	
mm				kN		min ⁻¹		_		kg
530	650 710 780	56 82 112	3 5 6	320 512 678	552 970 1 298	750 700 670	900 850 800	618/530MB 619/530MB 60/530MB		39,5 90,5 185
560	680 750 750 820	56 85 85 115	3 5 5 6	324 525 525 726	575 1 021 1 021 1 414	700 670 670 630	850 800 800 750	618/560MB 619/560MB 619/560MAP6 60/560MB		42,0 103 105 210
600	730 800 870	60 90 118	3 5 6	367 584 826	687 1 195 1 753	670 700 670	800 750 700	618/600MB 619/600MBP6 60/600MBP6		52,0 125 236
630	780 850 920	69 100 128	4 6 7,5	433 630 856	848 1 320 1 812	630 600 560	750 700 670	618/630MB 619/630MB 60/630MB		73,0 156 285
670	820 900	69 103	4 6	438 675	878 1 454	560 530	670 630	618/670MB 619/670MB		77,5 185
710	870 950	74 106	4 6	482 690	997 1 526	530 500	630 600	618/710MB 619/710MB		93,5 220
750	920 1 000	78 112	5 6	501 764	1 066 1 754	500 450	600 530	618/750MB 619/750MB		110 255
800	980	82	5	572	1 298	450	530	618/800MB		142
900	1 090	85	5	611	1 449	380	450	618/900MB		160
950	1 250	132	7,5	910	2 378	360	430	619/950FB		464
1 000	1 220	100	5	749	1 909	340	400	618/1000MB		245
1 120	1 360	106	6	880	2 456	300	360	618/1120M		331
1 320	1 600	122	6	953	2 834	260	320	618/1320MB		500
1 400	1 700	132	7,5	1 278	3 999	200	260	618/1400FA		567

Single-row deep groove ball bearings with filling slots


Dime	nsions	- - ·		Basic load	radial	Speed limit		Designation	Weight
d	D	В	rs min.	dyn. Cr	stat. C _{Or}	grease	oil		
mm				kN		min ⁻¹		-	kg
35	72 72 72 72 72 80	17 17 17 17 21	1,1 1,1 1,1 1,1 1,5	31,2 31,2 31,2 31,2 35,9	25 25 25 25 25 26,2	9 000 9 000 9 000 9 000 8 500	11 000 11 000 10 000	BL6207 BL6207-2Z BL6207-2ZNR BL6207NR BL6307	0,343 0,343 0,343 0,353 0,395
	80 80 80	21 21 21	1,5 1,5 1,5	35,9 35,9 35,9	26,2 26,2 26,2	8 500 8 500 8 500	10 000	BL6307-2Z BL6307-2ZNR BL6307NR	0,395 0,395 0,405
40	80 80 80 80 90	18 18 18 18 23	1,1 1,1 1,1 1,1 1,5	35,3 35,3 35,3 35,3 42,6	28,7 28,7 28,7 28,7 28,7 32,9	8 500 8 500 8 500 8 500 7 500	10 000 10 000 9 000	BL6208 BL6208-2Z BL6208-2ZNR BL6208NR BL6308	0,433 0,433 0,433 0,443 0,644
	90 90 90	23 23 23	1,5 1,5 1,5	42,6 42,6 42,6	32,9 32,9 32,9	7 500 7 500 7 500	9 000	BL6308-2Z BL6308-2ZNR BL6308NR	0,644 0,644 0,662
45	85 85 85 85 100	19 19 19 19 25	1,1 1,1 1,1 1,1 1,5	37,2 37,2 37,2 37,2 55,2	31,8 31,8 31,8 31,8 43,5	8 000 8 000 8 000 8 000 6 700	9 500 9 500 8 000	BL6209 BL6209-2Z BL6209-2ZNR BL6209NR BL6309	0,443 0,443 0,443 0,463 0,904
	100 100 100	25 25 25	1,5 1,5 1,5	55,2 55,2 55,2	43,5 43,5 43,5	6 700 6 700 6 700	8 000	BL6309-2Z BL6309-2ZNR BL6309NR	0,904 0,904 0,998
50	90 90 90 90 110	20 20 20 20 27	1,1 1,1 1,1 1,1 2	38,9 38,9 38,9 38,9 64,7	34,8 34,8 34,8 34,8 52	7 000 7 000 7 000 7 000 6 000	8 500 8 500 7 000	BL6210 BL6210-2Z BL6210-2ZNR BL6210NR BL6310	0,490 0,490 0,490 0,510 1,21
	110 110 110	27 27 27	2 2 2	64,7 64,7 64,7	52 52 52	6 000 6 000 6 000	7 000	BL6310-2Z BL6310-2ZNR BL6310NR	1,21 1,21 1,21
55	100 100 100 100 120	21 21 21 21 29	1,5 1,5 1,5 1,5 2	48,1 48,1 48,1 48,1 79,6	43,8 43,8 43,8 43,8 65,2	6 300 6 300 6 300 6 300 5 300	7 500 7 500 6 300	BL6211 BL6211-2Z BL6211-2ZNR BL6211NR BL6311	0,680 0,680 0,680 0,700 1,54
	120 120 120	29 29 29	2 2 2	79,6 79,6 79,6	65,2 65,2 65,2	5 300 5 300 5 300	6 300	BL6311-2Z BL6311-2ZNR BL6311NR	1,54 1,54 1,58
60	110 110 110 110	22 22 22 22 22	1,5 1,5 1,5 1,5	52,4 52,4 52,4 52,4	49,2 49,2 49,2 49,2	6 000 6 000 6 000 6 000	7 000 7 000	BL6212 BL6212-2Z BL6212-2ZNR BL6212NR	0,884 0,884 0,884 0,904

Single-row deep groove ball bearings with filling slots

Dime	nsions			Basic load	radial	Speed limit		Designation	Weight
d	D	В	r _s min.	dyn. C _r	stat. C _{0r}	grease	oil		
mm				kN		min ⁻¹		-	kg
60	130 130 130	31 31 31	2,1 2,1 2,1	90,1 90,1 90,1	71,5 71,5 71,5	5 000 5 000 5 000	6 000	BL6312-2Z BL6312-2ZNR BL6312NR	1,92 1,92 1,96
65	120 120 120 120 140	23 23 23 23 33	1,5 1,5 1,5 1,5 2,1	63,4 63,4 63,4 63,4 105	60 60 60 60 82	5 300 5 300 5 300 5 300 4 800	6 300 6 300 5 600	BL6213 BL6213-2Z BL6213-2ZNR BL6213NR BL6313	1,21 1,21 1,21 1,25 2,41
	140 140 140	33 33 33	2,1 2,1 2,1	105 105 105	82 82 82	4 800 4 800 4 800	5 600	BL6313-2Z BL6313-2ZNR BL6313NR	2,41 2,41 2,46
70	125 125 125 125 150	24 24 24 24 35	1,5 1,5 1,5 1,5 2,1	68,4 68,4 68,4 68,4 119	66,8 66,8 66,8 66,8 96,2	5 000 6 000 6 000 5 000 4 500	6 000 6 000 5 300	BL6214 BL6214-2Z BL6214-2ZNR BL6214NR BL6314	1,23 1,23 1,23 1,27 2,89
	150 150	35 35	2,1 2,1	119 119	96,2 96,2	4 500 4 500	5 300	BL6314-2Z BL6314NR	2,89 2,94
75	130 130 130 160 160	25 25 25 37 37	1,5 1,5 1,5 2,1 2,1	71,9 71,9 71,9 131 131	71,7 71,7 71,7 115 115	4 800 4 800 4 800 4 300 4 300	5 600 5 600 5 000	BL6215 BL6215-2Z BL6215NR BL6315 BL6315-2Z	1,33 1,33 1,38 1,38 3,50 3,50
80	140 140 140 170 170	26 26 26 39 39	2 2 2,1 2,1	86,9 86,9 86,9 141 141	84,7 84,7 84,7 133 133	4 500 4 500 4 500 3 800 3 800	5 300 5 300 4 500	BL6216 BL6216-2Z BL6216NR BL6316 BL6316-2Z	1,63 1,63 1,70 4,15 4,15
85	150 150 150 180 180	28 28 28 41 41	22233	102 102 102 145 145	95 95 95 138 138	4 300 4 300 4 300 3 600 3 600	5 000 5 000 4 300	BL6217 BL6217-2Z BL6217NR BL6317 BL6317-2Z	2,02 2,02 2,06 4,87 4,87
90	160 160 160 190 190	30 30 30 43 43	2 2 2 3 3	118 118 118 158 158	112 112 112 161 161	3 800 3 800 3 800 3 400 3 400	4 500 4 500 4 000	BL6218 BL6218-2Z BL6218NR BL6318 BL6318-2Z	2,49 2,49 2,54 5,62 5,62
100	180 180 180 215 215	34 34 34 47 47	2,1 2,1 2,1 3	153 153 153 191 191	140 140 140 214 214	3 400 3 400 3 400 3 000 3 000	4 000 4 000 3 600	BL6220 BL6220-2Z BL6220NR BL6320 BL6320-2Z	3,67 3,67 3,75 7,99 7,99

Dimensi	ons			Fig.	Basic load		Speed limit	Weight	Designation	
d	D	В	rs min.		dyn. Cr	stat. Cor	grease			
mm				-	kN		min ⁻¹	kg	-	
6,35	19 22	6 7	0,3 0,3	3 3	2,2 3,2	0,89 1,35	34 000 30 000	0,009 0,013	62/6A2ZR 63/6A2ZR	
7,93	22	7	0,3	5	3,3	1,35	18 000	0,012	60/8A2RSR	
9,525	22,225 22,225 22,225 23,017 28,575	5,558 7,142 7,142 7,937 9,525	0,4 0,4 0,4 0,4 0,6	1 4 2 3 1	3,35 3,35 3,35 3,35 5,1	1,4 1,4 1,4 1,4 2,4	28 000 17 000 28 000 26 000 22 000	0,008 0,012 0,012 0,013 0,030	650/9 651/9-2RS 651/9-2Z 658/9-2ZR 655/9	
	28,575 28,575 28,575	9,525 9,525 9,525	0,6 0,6 0,6	5 3 1	5,1 5,1 5,1	2,4 2,4 2,4	14 000 22 000 22 000	0,030 0,030 0,032	655/9-2RSR 655/9-2ZR 655/9TN	
11,112	23,017 28,575	7,937 9,525	0,4 0,6	2 1	2,7 5,1	1,3 2,4	26 000 22 000	0,017 0,030	65100-2ZR 65000	
12	28 28	12 12	0,3 0,3	5 3	5,1 5,1	2,4 2,4	13 000 22 000	0,033 0,033	66101-2RSR 66101-2ZR	
12,7	28,575 28,575 28,575 28,575 28,575	6,35 6,35 7,937 7,937 9,525	0,4 0,4 0,4 0,4 0,6	1 5 5 3 1	5,1 5,1 5,1 5,1 5,1	2,4 2,4 2,4 2,4 2,4	22 000 12 000 12 000 22 000 22 000	0,019 0,017 0,021 0,021 0,024	65101 65101-2RSR 65201-2RSR 65201-2ZR 65301	
	28,575 28,575 28,575 28,575 34,925	9,525 9,525 9,525 9,525 11,112	0,6 0,6 0,6 0,7 0,7	5 3 1 1	5,1 5,1 5,1 5,1 6	2,4 2,4 2,4 2,4 3,25	12 000 13 000 22 000 22 000 18 000	0,025 0,023 0,026 0,029 0,053	65301-2RSR 65301-2RSU 65301-2Z 65301TN 65401	
	34,925 34,925 34,925 34,925 34,925	11,112 11,112 11,112 11,112 11,112	0,7 0,7 0,7 0,7 0,7	5 3 7 9 1	6 6 6 6	3,25 3,25 3,25 3,25 3,25	11 000 18 000 11 000 18 000 18 000	0,052 0,052 0,049 0,057 0 053	65401-2RSR 65401-2ZR 65401-2RSRN 65401NR 65401TN	
15	35 40 40 42	9 11 11 11	0,6 0,6 0,6 0,6	3 2 2 1	6 7,65 7,65 7,65	2,4 3,75 3,75 3,75	19 000 16 000 16 000 15 000	0,040 0,045 0,045 0,080	65202ZR 65902-2Z 65902Z 66402	
15,863	42,16	20	0,6	1	11,2	5,4	15 000	0,132	65402	
15,875	34,925 34,925 34,925 34,925 34,925	7,142 8,732 8,732 8,732 11	0,8 0,8 0,8 0,8 0,6	1 5 3 6 1	6 6 6 7,65	3,25 3,25 3,25 3,25 3,75	20 000 12 000 17 000 12 000 19 000	0,032 0,039 0,039 0,039 0,041	65002 65702-2RSR 65702-2ZR 65702ZRRSR 65302	

Fig. 7

Dimen	sions			Fig.	Basic radial load		Speed limit	Weight	Designation	
d	D	В	r _s min.		dyn. Cr	stat. Cor	grease			
nm				-	kN		min ⁻¹	kg	-	
15,875	34,925 34,925 34,925 34,925 34,925	11 11 11 11 11 11,112	0,6 0,6 0,6 0,6 0,7	4 5 7 7	7,65 7,65 7,65 7,65 6	3,75 3,75 3,75 3,75 3,25	12 000 12 000 12 000 12 000 17 000	0,044 0,043 0,042 0,042 0,049	65302-2RS 65302-2RSR 65302-2RSNR 65302-2RSRN 66702	
	35 39,687 40	11 11,112 12	0,6 0,6 0,6	3 5 5	7,65 7,65 9,55	3,75 3,75 4,8	12 000 16 000 10 000	0,042 0,045 0,067	65802RSR 66802-2ZR 65602RSR	
17	30 40 40 40 47	10 12 14 17,462 15,5	0,5 0,5 0,6 0,6 1	1 7 5 5 5	3,25 9,55 9,6 9,55 13,5	2 4,8 4,6 4,8 6,6	19 000 9 500 11 000 11 000 11 000	0,033 0,063 0,079 0,097 0,130	65903 65703-2RSR2N 65303RSR 65103-2RSR 65403RSR	
18,5	35	10	0,3	6	6	3,25	10 000	0,040	60/18RSRZRF2	
19	47 52 52	14 15 15	1 1 1	3 5 3	12,7 14 14	5,7 7,85 7,85	14 000 7 500 12 000	0,156 0,142 0,156	62/19ZR 63/19-2RSR 63/19-2ZR	
19,05	40 40 41,275 41,275 41,275	12 12 7,937 11,113 11,113	0,6 0,6 0,8 0,8 0,8	5 3 1 5 3	9,5 9,5 9,4 9,4 9,4	4,15 4,15 5,05 5,05 5,05	11 000 16 000 16 000 11 000 17 000	0,067 0,067 0,050 0,070 0,070	65304-2RSR 65304-2ZR 65704 65804-2RSR 65804-2ZR	
	41,275 41,275 47,625 50,8	12,7 12,7 14,287 14,287	0,6 0,6 1 0,8	1 5 3 1	9,4 9,4 12,8 10,1	5,05 5,05 6,65 5,8	16 000 9 000 13 000 12 000	0,068 0,075 0,114 0,144	65504 65504-2RSR 66804-2ZR 66704	
19,063	42,225 45,225 45,225 45,225 45,225	15,49 15,49 15,49 15,49 15,49	1 1 1 1	5 1 5 5 4	12,7 12,7 12,8 12,8 12,8	5,7 5,7 6,65 6,65 6,65	11 000 16 000 11 000 11 000 11 000	0,108 0,108 0,108 0,109 0,109	65404-2RSR ¹⁾ 65404 65404RSR ¹⁾ 65404-2RSRA ¹⁾ 65404-2RSRA ¹⁾	
20	42	9	0,6	1	9,4	5	15 000	0,052	66004	
2,217	52	15	1	2	16,2	8,1	12 000	0,142	65904Z	
22,225	47,625 47,625 47,625 50,8 50,8	9,525 12,7 12,7 14,287 14,287	0,8 0,8 0,8 1,1 1,1	1 5 3 5 3	10,1 10,1 10,1 15,9 15,9	5,85 5,85 5,85 7,9 7,9	15 000 7 500 15 000 8 000 12 000	0,070 0,100 0,095 0,124 0,124	65104 65204-2RSR 65204-2ZR 66904-2RSR 66904-2ZR	
25	42	9	0,3	1	8,95	5.15	13 000	0.047	61905P6	

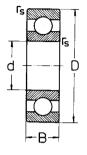


Fig. 2

Fig. 3

Fig. 4

Fig. 5

	limensions			Fig.	Basic radial load		Speed limit	weignt	Designation	
d	D	В	r _s min.		dyn. Cr	stat. C _{Or}	grease			
mm				-	kN		min ⁻¹	kg	-	
25	42	9 12	0,3	1	8,95	5,15	13 000	0,046	61905TNP6	
	52 52	12	1	1	14 14	7,85 7,85	12 000	0,104 0,112	65105 65105TN	
	62	11.303	i	i	20.6	7,85 11,3	12 000 12 000	0,201	65305	
	52 52 62 62	12	0,6	İ	20,5	11,1	12 000	0,177	68305	
	62	21	1	5	17,9	9,8	8 000	0,300	65405RSR	
	62	25,4	1	5	20,6	11,8	8 000	0,344	65505-2RSR	
	68	19	1	1	19,5	11,3	9 500	0,214	66305	
25,4	50,8	12,7	0,8	5	10,1	5,85	9 500	0,120 0,126	66705-2RSR	
	50,8 50,8	12,7	0,8	3	10,1	5,85	12 000	0,126	66705-2ZR 66605NR	
	50,6 50,8	14,287 14,287 14,287 14,287	0,8 0,8 0,8	1	10,1 10,1	5,85 5,85	12 000 12 000 7 000 7 000	0,126 0.130	66605	
	50.8	14.287	0.8	4	10.1	5.85	7 000	0,130 0,130	66605RS	
	50.8	14,287	0.8	4	10,1 10,1	5.85	7 000	0.142	66605-2RS	
	50,8	14,287	0,8	5	10,1	5,85	7 000	0,122	66605-2RSR	
	50,8 50,8	14,287	0,8	2 3 7	10,1	5,85	9 500 9 500	0,142 0,142	66605-2 <u>Z</u>	
	50,8	14,287	0,8	3	10,1 10,1	5,85	9 500	0,142	66605-2ZR	
	50,8	14,287	0,8	4	10,1	5,85	7 000	0,138	66605-2RSN	
	50,8 50,8	14,287 14,287	0,8 0,8	7 1	10,1 10,1	5,85 5,85	7 000 12 000	0,142 0,142	66605-2RSRN 66605TN	
	62	16	1	3	19,5	11,3	10 000	0,188	65605ZRC4	
28,575	52	15	1	5	10,7	6,65	6 700	0,135	62/28A2RSR	
28,58	71,425	20,638	2,3	1	26,6	15	9 000	0,385	65006	
30	62 72	23,813	1	5	19,5	11,3	5 500	0,300	63206-2RSR	
	72	17	1	1	28,1	14,6	9 000	0,368	65806	
32	72	17	1	1	25,7	15,3	9 000	0,327	6207/32	
38	80	18	1,5	2	32,6	19,8	8 500	0,392	6208Z/38	
40	52	8	0,3	10	4,5	4	10 000	0,040	65508-2ZNR	
	85	19	1	1	33,8	18,2	8 500	0,449	65008	
	90	20	1,5	9	40,7	24	8 500	0,659	65108NR	
45	100	21	1,5	8	52,8	31,7	6 000	0,714	65109N	
110	175	31	2	2	93,5	78,2	3 400	2,42	65022Z	
133,35	184,15	25,4	2,3	11	49	52,6	2 800	2,05	65027SK	
165,1	184,15	12,7	0,6	1	20	40	700	0,371	65033V	
, .	184,1	12,7	0,6×45°	5	12,2	19	700	0.396	65033-2RSR	
	279,4	39,687	4	4	170	170	700	9,08	66033MBP6F2	
172,3	228,5	35	0,3	2	66,7	79	2 200	3,36	65034-2Z	

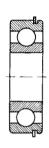


Fig. 7

Fig. 8

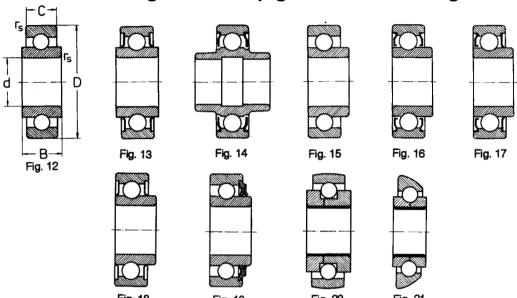
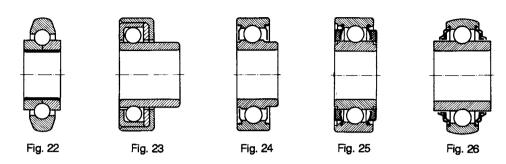
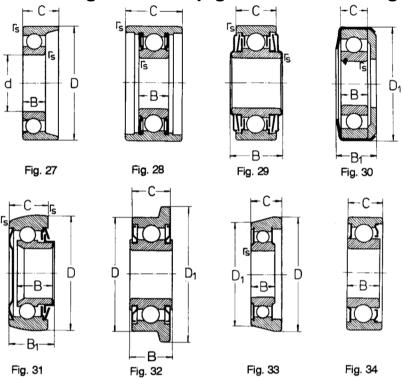

Fig. 9

Fig. 10

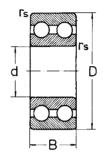
Fig. 11


Dimen	sions			Fig.	Basic I		Speed limit	Weight	Designation	
d	D	В	rs min.		dyn. Cr	stat. C _{Or}	grease			
mm				_	kN		min ⁻¹	kg	-	
180	259,6	33	2	1	140	147	2 000	5,78	65036MC3	
190	269,5	33	2	1	151	156	2 000	5,75	65038MC3	
200	289,5	38	2,1	1	163	179	1 900	8,70	65040MBC3	
230	329,5	40	2,1	1	185	218	1 900	12,0	65046MC3	
260	369,5	46	2,1	1	229	289	1 500	16,5	65052MAC3	
280	389,5	46	2,1	1	216	285	1 300	19,0	65056MAC3	
390	475	40	2,1	1	200	290	750	11,5	65078TNP6	
440	525	40	2,1	1	209	320	630	14,0	65088TNP6	
490	575	40	3	1	217	350	560	15,5	65098TNP6	
540	625	40	3	1	225	379	500	17,5	650/540TNP6	
590	675	40	3	1	233	409	480	18,5	650/590TNP6	
760	1080	150	7,5	1	1 028	2 426	480	406	650/760MBC3	

			1 19. 10		rig.	19		1 lg. 20	ı ıy.	*
Dimensio	ons D	В	С	r _s min.	Fig.	Basic load dyn. C _r	radial stat. Cor	Speed limit grease	Weight	Designation
nm					-	kN		min ⁻¹	kg	-
3	20	9,4	8,2		20				0,020	658/6B
3,35	34,925 37,338	8,25 13,46	6,35 9,5		21 22				0,035 0,067	659/6B 660/6B
3 11	20,5 22 32	12 12 15,4	6,3 7 10	0,3 0,3 0,6	23 23 13	6,8	3,1	8 000	0,012 0,015 0,045	655/8B 651/8B 65001B2RSR
12,75	40	33,324	11,999	0,6	14	9,55	4,8	8 000	0,102	65501B2Z
15	35	14,4	11	0,6	13	7,65	3,75	8 000	0,049	65102B2RSR
16,256	39,98 39,98	18,288 18,288	11,989 11,989	0,6 0,6	13 13	9,55 9,55	4,8 4,8	7 500 7 500	0,096 0,085	65003B2RSR 65003B2RSRTN
17	40	16,6	11,988	0,6	13	9,55	4,8	7 500	0,080	65603B2RSR
20	47 47 47	15 18 18	12 14 14	0,6 1 1	16 16 16	10,1 12,7 12,7	5,8 5,75 5,75	6 300 6 300 6 300	0,108 0,125 0,125	66404BZR 6204B2ZR 6204BZR
25 25,438	52 47 62 62 50,8	15,875 15 21 21 18,034	15 12 17 17 15	1 0,6 1 1 1,1	17 16 17 19 13	14 10 20,6 20,6 14	7,85 5,1 11,3 11,3 7,85	5 000 6 000 5 000 5 000 5 600	0,143 0,089 0,268 0,268 0,140	66405BZRRSR 6005BZR 65205BZRRSR 65405BRSR 66505B2ZANR
28,588	55	25,5	12,98	0,6	18	13,2	8,25	5 300	0,127	65106B2RSRTN
30	55 55 62 67 75	19 19 24 17,5 30	13 13 16 15,5 23	1 1 1 1 1,5	18 17 13 13	12,7 12,7 15,2 19,5 29,9	6,95 6,95 10,3 11,3 15,8	5 000 5 000 5 000 5 000 4000	0,146 0,146 0,234 0,270 0,527	6006B2RSR 6006B2RRSR 65606B2RSR 66306B 66606B2RSZ
	80 80	37 37	18 30	1,1 1,1	13 26	29,1 29,1	17,9 17,9	4000 4000	0,662 0,795	66506B2RSR 66506B2ZRA
32,893	57,15	15,113	9,525	0,6	15	11,2	7,45	6000	0,110	65207B

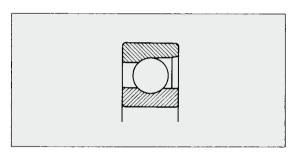


Dimension	enc				Fig.	Basic load	radial	Speed limit	Weight	Designation
đ	D	В	С	r _s min.		dyn. Cr	stat. Cor	grease		
mm	<u> </u>				-	kN		min ⁻¹	kg	-
35	62 72 72 72 72 72	22 25 25 25 25 33,376	14 17 17 17 19	1 1,1 1 2 2	18 19 13 13 26	15,9 25,5 28,9 22,9 25,7	8,5 13,7 17,1 17,1 15,3	4 500 4 000 4 000 4 000 4 000	0,195 0,307 0,340 0,361 0,415	6007B2RSRA 6207BRSA 65107B2RSR 65107B2RSRTN 65007B2ZA
37	62	21,7	14	1	17	19,5	11,4	4 000	0,232	65807BRSRZRT
40	80 80	27 27	24 21	1,1 1,1	25 14	32,6 32,6	19,8 19,8	3 600 3 600	0,488 0,448	65208B2RSA 65608B2Z
41,29	73,46	19,62	16	2	15	22,5	13,8	4 000	0,299	65308BC3
45	85 85 100	27 27 31,5	21 21 25	1,1 1,1 1,5	12 13 15	32,7 32,7 52,8	20,2 20,2 31,7	4 000 4 000 4 000	0,482 0,482 0,903	65409B 65409B2RSR 65009B
55	100	55,6	25	1,5	26	43,4	29,2	3 600	0,104	65111B2ZA
60	110	29,5	22	1,5	15	52,5	36	3 600	0,875	65012B
95,27	128,62	19,3	16	2	15	31,3	29,8	3 000	0,622	65019B
111,125	147,638	31,75	28,575	1	16	39,1	40,5	1 700	1,21	65922B2ZR
172,3	228,6	65	35	0,3	24	66,7	79	1 100	4,36	65034B2Z
							<u> </u>			


Non-standard Single-row deep groove ball bearings

Dime	nsions						Fig.	Basic load		Speed limit	Weight	Designation
d	D	D ₁	В	C	B ₁	r _s min.		dyn. C _r	stat. Cor	grease		
mm							-	kN		min ⁻¹	kg	-
7	22		9,8	10,3		0,3	34	3,3	1,35	18 000	0,080	650/7AZRRSR
8	24		9,8	10,3		0,3	34	3,35	1,4	17 000	0,090	650/8AZRRSR
9	47	50	14	14		1	32	13,4	6,55	15 000	0,128	657/9RZR
12,7	26,67	29	7,93	7,93		1	32	4,5	3,5	12 000	0,020	66001R2RS
17	40		13,66	14,3		0,6	34	9,55	4,8	10 000	0,079	65203AZRRSR
20	60 60		21 31,6	24 24	26	1,1 1	31 29	15,9 15,9	7,9 7,9	10 000 10 000	0,308 0,451	65004AZC3S1 67004B2ZAC3S1
25	80	100	36	35		0,7	32	37,2	18,8	7 500	1,15	65005R2Z
25,4	82,6		29,4	25,4		1	31	25,7	15,4	7 500	0,610	66205Z
30	57 80 80 80		13 15 28 37	24 30 30 30	30 33,5	1	28 31 31 29	13,2 44 29,9 29,9	8,25 27,4 15,8 15,8	6 000 3 500 7 000 7 000	0,150 0,541 0,635 0,635	65306A2RSTN 65506VC5S4 65506ZC3 65206-2ZRAS1
40	68	70	9	9	18	0,3	30	13,3	9,8	9 500	0,795	658 Z 08
50	80 89	82 80	10 16	10 22	20	0,6 1	30 33	16,3 21,8	13,1 16,5	6 000 4 000	0,346 0,400	654Z10 65210A2RS
50,8	95,25		15,875	25,4		1	27	21,8	16,5	5 000	0,734	65310A
55	90	92	18	18	25,6	1	30	28,3	21,2	6 000	0,624	650Z11C3
6 3,5	100	102	15,6	15,6	22,1	1	30	30,5	25,2	4 500	0,605	650Z13P63

Double-row deep groove ball bearings


Dime	nsions			Basic load	radial	Speed limit	t	Designation	Weight
d	D	В	r _s min.	dyn. Cr	stat. C _{0r}	grease	oil		
mm				kN		min ⁻¹		-	kg
10	30	14	0,6	7,7	5,9	18 000	24 000	4200	0,057
12	32	14	0,6	7,75	6,15	16 000	20 000	4201	0,062
15	35	14	0,6	9,75	9	14 000	18 000	4202	0,071
	42	17	1	13,1	11,7	13 000	17 000	4302	0,123
17	40	16	0,6	11,7	10,4	13 000	17 000	4203	0,106
	47	19	1	16,5	15	11 000	15 000	4303	0,171
20	47	18	1	16,4	16	10 000	14 000	4204	0,165
	52	21	1,1	19,5	17	9 500	13 000	4304	0,227
25	52	18	1	16,3	16,9	9 000	12 000	4205	0,189
	62	24	1,1	26,3	25,7	8 000	10 000	4305	0,365
30	62	20	1	22	24,7	7 500	9 500	4206	0,298
	72	27	1,1	35,5	35,9	6 700	8 500	4306	0,542
35	72	23	1,1	26,4	30,7	6 700	8 500	4207	0,460
	80	31	1,5	40,6	41,8	6 300	8 000	4307	0,752
40	80	23	1,1	33,7	42,4	6 000	7 500	4208	0,558
	90	33	1,5	46	48,8	5 600	7 000	4308	1,01
45	85	23	1,1	31,9	43,9	5 600	7 000	4209	0,605
	100	36	1,5	57,6	62,4	4 800	6 000	4309	1,35
50	90	23	1,1	31,4	44,6	5 000	6 300	4210	0,651
	110	40	2	70,4	77,7	4 300	5 300	4310	1,80
55	100	25	1,5	37,2	54,1	4 500	5 600	4211	0,882
	120	43	2	84,2	94,4	4 000	5 000	4311	2,29
60	110	28	1,5	47,9	67,6	4 000	5 000	4212	1,20
	130	46	2,1	99,2	113	3 600	4 500	4312	2,87
65	120	31	1,5	54,7	78,5	3 800	4 800	4213	1,59
	140	48	2,1	107	124	3 400	4 300	4313	3,46
70	125	31	1,5	62,1	89,8	3 600	4 500	4214	1,68
	150	51	2,1	115	136	3 000	3 800	4314	4,21
75	130	31	1,5	61,6	90,7	3 400	4 300	4215	1,77
	160	55	2,1	132	158	2 800	3 600	4315	5,15

Magneto ball bearings

The inner ring of dismountable single row deep groove ball bearings (magneto-type) is similar to that of normal bearings and the outer ring has one rib which makes bearing to be dismountable. The raceway on the outer ring has a cylindrical surface.

The inner and outer ring are mounted separately in the operating assembly.

Cages for these bearings are pressed sheet cages or glass fibre reinforced polyamide 6.6 cages.

Dismountable deep groove ball bearings, single row, are generally manufactured to the normal tolerance class and the tolerance of the outside diameter for the whole bearing

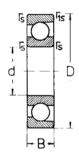
range is 0/+ 0,010 mm. Radial clearance is also normal.

If two bearings of this type are to be mounted on a shaft, a small axial clearance should compensate for possible shaft length variations.

Equivalent dynamic load

Equivalent dynamic load can be calculated using the equations:

$$P_r = F_r$$
, kN, when $F_a / F_r \le 0.2$, $P_r = 0.5 F_r + 2.5 F_a$, kN, when $F_a / F_r > 0.2$.

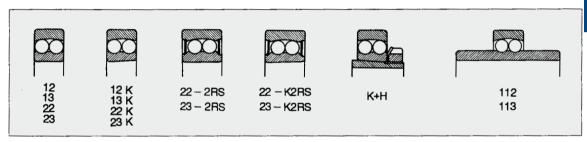

Equivalent static load

$$P_{0r} = F_r$$
, kN, when $F_a / F_r \le 0.8$, $P_{0r} = 0.6 F_r + 0.5 F_a$, kN, when $F_a / F_r > 0.8$.

Abutment dimensions of these bearings correspond to those of deep groove ball bearings, single row, of series 62, page 121.

Magneto ball bearings

nsions				load		Speed lin		Designation	Weight
D 1)	В	r _s min.	r _{1s} min	dyn. Cr	stat. Cor	grease	oil		
				kN		min ⁻¹		-	kg
16	5	0,15	0,10	1,55	0,26	34 000	40 000	E3	0,005
16	5	0,15	0,10	1,55	0,26	34 000	40 000	E4	0,005
16	5	0,15	0,10	1,55	0,26	34 000	40 000	E5	0,005
21	7	0,30	0,15	2,80	0,45	30 000	36 000	E6	0,011
22	7	0,30	0,15	3,10	0,55	28 000	34 000	E7	0,012
24	7	0,30	0,15	3,20	0,60	28 000	34 000	E8	0,014
28	8	0,30	0,15	4,25	0,83	26 000	32 000	E9	0,022
28	8	0,30	0,15	4,25	0,83	26 000	32 000	E10	0,021
32	7	0,30	0,15	3,50	0,80	22 000	28 000	E11	0,027
32	7	0,30	0,15	3,50	0,80	22 000	28 000	E12	0,027
30	7	0,30	0,15	3,50	0,80	22 000	26 000	E13	0,021
35	8	0,30	0,15	4,50	1,10	19 000	24 000	E14	0,034
35 40	8 10	0,30 0,60	0,15 0,30	4,50 7,35	1,10 1,70	19 000 18 000	24 000 22 000	E15 BO15	0,033 0,055
40 44	10 11	0,60 0,60	0,30 0,30	5,70 8,80	1,45 2,10	17 000 15 000	20 000 18 000	L17 BO17	0,053 0,073
40	9	0,60	0,15	3,45	1,00	17 000	20 000	E19	0,048
47 47 52	12 14 15	1,00 1,00 1,00	0,60 0,60 0,60	8,80 8,80 12,20	2,24 2,24 3,00	14 000 14 000 13 000	17 000 17 000 16 000	E20 L20 M20	0,087 0,100 0,138
52 62	15 17	1,00 1,10	0,60 0,60	8,65 16,00	2,40 4,00	12 000 11 000	15 000 14 000	L25 M25	0,122 0,217
	D 1) 16 16 16 16 21 22 24 28 28 32 30 35 35 40 40 47 47 47 52 52 62	D 1) B 16 5 16 5 16 5 21 7 22 7 24 7 28 8 28 8 32 7 32 7 30 7 35 8 40 10 40 10 44 11 40 9 47 12 47 14 52 15 52 15 62 17	D 1) B r _s min. 16 5 0,15 16 5 0,15 16 5 0,15 21 7 0,30 22 7 0,30 24 7 0,30 28 8 0,30 28 8 0,30 32 7 0,30 32 7 0,30 33 7 0,30 35 8 0,30 35 8 0,30 35 8 0,30 40 10 0,60 40 10 0,60 40 10 0,60 40 10 0,60 40 10 0,60 40 10 0,60 41 11 0,60 40 9 0,60 47 12 1,00 47 14 1,00 52 15 1,00 52 15 1,00 52 15 1,00	D 1) B r _s min. r _{1s} min 16 5 0,15 0,10 16 5 0,15 0,10 21 7 0,30 0,15 22 7 0,30 0,15 24 7 0,30 0,15 28 8 0,30 0,15 28 8 0,30 0,15 32 7 0,30 0,15 32 7 0,30 0,15 32 7 0,30 0,15 33 7 0,30 0,15 35 8 0,30 0,15 35 8 0,30 0,15 35 8 0,30 0,15 35 8 0,30 0,15 36 0,30 0,15 37 0,30 0,15 38 0,30 0,15 39 0,60 0,30 40 10 0,60 0,30 40 10 0,60 0,30 40 10 0,60 0,30 40 10 0,60 0,30 40 10 0,60 0,30 40 10 0,60 0,30 40 10 0,60 0,30 40 10 0,60 0,30 40 10 0,60 0,30 52 15 1,00 0,60 52 15 1,00 0,60 52 15 1,00 0,60 52 15 1,00 0,60 52 15 1,00 0,60	D 1) B	D 1) B	D B F _S min. F _{1S} C _r Stat. C _r C _{Or} RN min min	Name	D D B F _S F _{1 S} F _{1 S}



Self-aligning ball bearings have a common sphered raceway in the outer ring. This feature allows angular misalignment of the shaft relative to the housing. Therefore self-aligning ball bearings are particularly used in case of bearings where misalignment can occur from errors in

mounting or from shaft bending.

Double row self-aligning ball bearings are manufactured both with cylindrical bore and tapered bore (taper 1:12). Self-aligning bearings with tapered bore can be delivered. at request, with adapter sleeves.

Suffixes

н

C2 - radial clearance smaller than normal C3

radial clearance larger than normal

- adapter sleeve

ĸ tapered bore bearings

M - machined brass cage, ball guided MB

- machined brass cage, guided on the inner

P6 - tolerance class more accurate than normal

P63 tolerance class P6 with radial clearance C3

2RS - bearing with two seals

TN - polyamide cage

Sealed self-aligning ball bearings

Self-aligning ball bearings are also available in a sealed version with seals at both sides. The seals are made of gasoline, oil and wear-resistant synthetic rubber. Sealed bearings are delivered filled with a certain grease quantity. Sealed bearing operating temperatures are between -30°C and +80°C. Grease service life is much reduced if bearing operates at a temperature higher than +80°C (see Chapter 8).

Sealed bearings are greased for the entire operating

period, relubrication not being necessary. Sealed bearings washing or heating before mounting in assembly is not allowed.

Self-aligning ball bearings with extended inner ring

Self-aligning ball bearings with extended inner ring of series 112 and 113 are used in applications where high accuracy is not necessary and generally, they can be mounted directly on rolled shafts. The bore manufactured to tolerance class J7 allows fast mounting and dismounting. The inner ring has a groove for bearing axial location which can be done by means of a screw or pin.

Dimensions

Overall dimensions of self-aligning ball bearings are in accordance with ISO 15

Dimensions of adapter sleeves are in accordance with ISO 113/1

Tolerances and radial clearance

Bearings of serial production are manufactured to normal tolerance class and with normal radial clearance. Tapered bore bearings of serial production are also manufactured with radial clearance C3.

Self-aligning ball bearings with extended inner ring are manufactured with radial clearance C2 and normal clearance.

At request, these bearings can also be manufactured to other tolerance classes and with smaller or larger radial clearance.

The bore of self-aligning ball bearings with extended inner ring is manufactured to tolerance class J7.

Bearing tolerances are given on page 37 and the values of radial clearance are given in tables 2 and 3.

Misalignment

Self-aligning ball bearings allow within certain limits an angular misalignment of the outer ring in relation to the inner ring, without detrimental effects in bearing unit.

Approximate values for permissible misalignment, under normal operating conditions are given in table 1.

Permissible misalignment

Table 1

Bearing series	Permissible misalignment
	degrees
108,126,127,129,135	3
12,112	2,5
13,113	3
22	2,5
22-2 RS	1,5
23	3
23-2 RS	1,5

Radial clearance of self-aligning ball bearings With cylindrical bore

Table 2

											1 able /
Bore diamete	r	Designa	tion of clear	ance group							
d		C2 Bearing	radial cleara	Normal nce			C3			C5	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
mm		μm									
2,5	6	1	8	5	15	10	20	15	25	21	33
6	10	2	9	6	17	12 .	25	19	33	27	42
10	14	2	10	6	19	13	26	21	35	30	48
14	18	3	12	8	21	15	28	23	37	32	50
18	24	4	14	10	23	17	30	25	39	34	52
24	30	5	16	11	24	19	35	29	46	40	58
30	40	6	18	13	29	23	40	34	53	46	66
40	50	6	19	14	31	25	44	37	57	50	71
50	65	7	21	16	36	30	50	45	69	62	88
65	80	8	24	18	40	35	60	54	83	76	108
80	100	9	27	22	48	42	70	64	96	89	124
100	120	10	31	25	56	50	83	75	114	105	145
120	140	10	38	30	68	60	100	90	135	125	175
140	160	15	44	35	80	70	120	110	161	150	210

With tapered bore

Table 3

Bore diamete		Designation of clearance group												
d		C2 Bearing	radial cleara		Normal e			C4		C5				
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.			
mm	μm													
18	24	7	17	13	26	20	33	28	42	37	55			
24	30	9	20	15	28	23	39	33	50	44	62			
30	40	12	24	19	35	29	46	40	59	52	72			
40	50	14	27	22	39	33	52	45	65	58	79			
50	65	18	32	27	47	41	61	56	80	73	99			
65	80	23	39	35	57	50	75	69	98	91	123			
80	100	29	47	42	68	62	90	84	116	109	144			
100	120	35	56	50	81	75	108	100	139	130	170			
120	140	40	68	60	98	90	130	120	165	155	205			
140	160	45	74	65	110	100	150	140	191	180	240			

Equivalent dynamic radial load

 $P_r = F_r + Y_1 F_{a_r} kN,$ when $F_a/F_r \le e$, $P_r = 0.65 F_r + Y_2 F_a$, kN when $F_a/F_r > e$

The values of factors e, Y1 and Y2 which depend on bearings are given in bearing tables.

Equivalent static radial load

$$P_{0r} = F_r + Y_0 F_a, kN$$

The values of the factor Yo which depends on bearing are given in bearing tables.

Axial load on bearings with adapter sleeves

If self-aligning ball bearings are mounted with adapter sleeves on smooth shafts, without side location, their axial carrying capacity depends on the friction between the sleeve bore and shaft.

Permissible axial load can be precisely enough determined using the equation:

 $F_{a max} = 3 B d.$

where:

Fa max - maximum permissible axial load, N

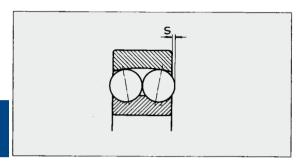
B - bearing width, mm

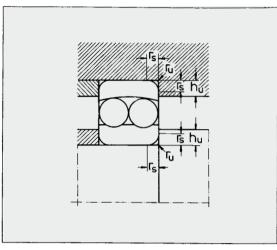
d - bearing bore diameter, mm

Cages

Self-aligning ball bearings are generally fitted with pressed cages of sheet. At special request, when bearings operate under fluctuating loads, at high speeds and where large sizes are required, machined brass cages are recommended to be used. Glass fibre reinforced polyamide 6.6 cages are also suitable if the operating temperatures do not exceed + 120°C. They have low weight, a low coefficient of friction and are noiseless while running.

Cage design and technical data are given in table 4.


Cage design and technical data


		ouge doorgii and to			Table 4
Cage	Design bearing	cage		Application	Max. value D _m n oil grease
Pressed sheet cage	30			- General application - Moderate speeds - Sealed bearings series 12, 13, 22, 23	600×10 ³ 450×10 ⁶
Pressed sheet cage				- General application - Moderate speeds - Bearings series 22, 23	600×10 ³ 450×10 ⁵
Polyamide cage TN			DO'US	- High speeds - Bearings series 12, 13, 22, 23	1000×10 ³ 800×10 ⁰
Machined brass cage M				- High speeds - Bearings: 1220-1222, 1317-1322, 2217-2222, 2317-2320.	900×10 ³ 700×10 ⁶

Special characteristics

In case of some dimensions of self-aligning ball bearings series 12 and 13, the balls protrude somewhat from the bearing, as shown in the adjacent design and table. This should be considered both by designer and user.

Abutment dimensions

Table 6

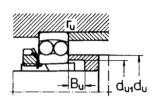
r ₈ min.	r _u max.	humin min. Bearing series 12, 13, 112, 22, 23, 113
mm		
0,3	0,2	1,2
0,6	0,6	2,1
1	1	2,8
1,1	1	3,5
1,5	1,5	4,5
2	2	5,5
2,1	2,1	6
1,5 2 2,1 2,5	2,5	7
3	2,5	7

Values of dimension S

Table 5

Bearing	S	
	mm	
1224	1,3	_
1226	0,7	
1318	1,0	
1319	1,5	
1320	2,5	
1321	2,6	
1322	2,5 2,6 2,6	

Abutment dimensions


For a proper location of bearing rings on the shaft shoulder and housing shoulder respectively, maximum connection radius $r_{u \text{ max}}$, of shaft (housing) should be less than minimum mounting chamfer $r_{s \text{ min}}$ of bearing.

Shoulder height should also be properly sized in case of bearing maximum mounting chamfer.

In case of self-aligning ball bearings with tapered bore which are mounted directly on a tapered shaft or with an adapter sleeve, proper tightening and minimum radial clearance of 10 - 20 μm should be assured for normal clearance and of 20 - 55 μm for clearance C3 , depending on bearing size and series . The values of the connection radius and support shoulder height are given in table 6 and mounting dimensions for bearings mounted with adapter sleeves are given in table 7.

Self-aligning ball bearings with adapter sleeves

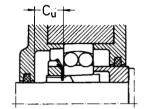
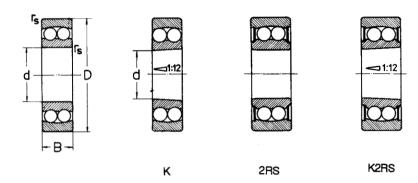
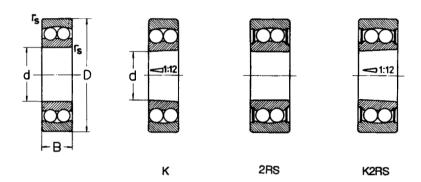



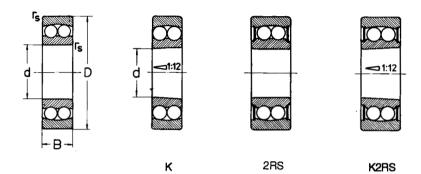
Table 7

Bore	Shaft diame-	Bearing	g series											
sym- bol	ter	12K			22K	22K					23K			Ali series
		d _{u1} min.	d _u max.	B _u min.	d _{u1} min.	d _u max.	B _u min.	d _{u1} min.	d _u max.	B _u min.	d _{u1} min.	d _u max.	B _u min.	C _u
	mm									_				
04	17	23	27	5	23	27	5	23	30	8	24	28	5	
05	20	28	32	6	28	32	5	28	35	6	30	34	5	15
06	25	33	38	6	33	38	5	33	42	6	35	40	5	15
07	30	38	45	5	39	44	5	39	49	7	40	45	5	17
08	35	43	52	5	44	50	5	44	55	5	45	. 51	5	17
09	40	48	57	5	50	56	7	50	61	5	50	57	5	17
10	45	53	62	5	55	61	9	50	61	5	56	63	5	19
11	50	60	69	6	60	68	10	60	74	6	61	69	6	19
12	55	64	75	6	65	73	9	65	83	6	66	74	6	20
13	60	70	83	6	70	79	8	70	89	6	72	82	6	21
14	60	75	86	6	75	85	11	75	94	6	77	88	6	21
15	65	80	92	6	80	90	12	80	100/	6	82	94	6	23
16	70	85	99	6	85	96	12	85	107	6	88	100	6	25
17	75	90	105	7	91	102	12	91	114	7	94	108	7	27
18	80	95	110	7	96	108	10	96	120	7	100	112	7	28
19	85	100	117	7	102	114	9	102	126	7	105	117	7	29
20	90	106	124	7	108	120	8	108	132	7	110	125	7	29 30



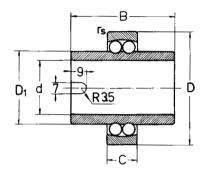
Dim	ensior	18			: radial	load.F	actors	ctat		Speed lis	mit	Designation	Weight
d	D	В	r _s min.	dyn. Cr	е	Y ₁	Y ₂	stat. Cor	Yo	grease	oil		
nm				kN	_			kN	_	min ⁻¹		-	kg
5	19	6	0,3	2,55	0,33	1,9	3	0,48	2	30 000	36 000	135	0,010
6	19	6	0,3	2,5	0,33	1,9	3	0,48	2	30 000	36 000	126	0,010
7	22	7	0,3	2,65	0,33	1,9	3	0,56	,2	30 000	36 000	127	0,010
В	22	7	0,3	2,65	0,33	1,9	3	0,56	2	30 000	36 000	108	0,010
9	26	8	0,6	3,8	0,33	1,9	3	8,0	2	26 000	32 000	129	0,020
10	30 30 35	9 14 11	0,6 0,6 0,6	5,5 7,2 7 , 2	0,33 0,54 0,34	1,9 1,2 1,9	3 1,8 2,9	1,2 1,6 1,6	2 1,2 1,9	24 000 22 000 20 000	30 000 28 000 26 000	1200 2200 1300	0,030 0,040 0,620
12	32 32 37 37	10 14 12 17	0,6 0,6 1	5,6 7,6 9,4 9,4	0,37 0,53 0,35 0,54	1,7 1,2 1,8 1,2	2,6 1,8 2,8 1,8	1,25 1,75 2,15 2,3	1,8 1,2 1,9 1,2	22 000 20 000 18 000 17 000	28 000 26 000 22 000 20 000	1201 2201 1301 2301	0,040 0,050 0,060 0,090
15	35 35 42 42	11 14 13 17	0,6 0,6 1 1	7,5 7,7 9,55 12,1	0,36 0,5 0,35 0,5	1,8 1,3 1,8 1,3	2,7 2 2,8 2	1,75 1,85 2,3 2,9	1,9 1,3 1,9 1,3	19 000 18 000 17 000 15 000	24 000 22 000 20 000 18 000	1202 2202 1302 2302	0,040 0,060 0,090 0,110
17	40 40 47 47	12 16 14 19	0,6 0,6 1 1	7,9 9,8 12,5 14,5	0,32 0,5 0,34 0,49	1,9 1,3 1,8 1,3	3 2 2,9 2	2,05 2,4 3,15 3,6	2 1,3 2 1,3	18 000 17 000 14 000 13 000	22 000 20 000 17 000 16 000	1203 2203 1303 2303	0,070 0,080 0,130 0,160
20	47 47 47 47 52	14 14 18 18 15	1 1 1 1 1,1	9,9 9,9 12,6 12,6 12,4	0,28 0,28 0,28 0,28 0,3	2,2 2,2 2,2 2,2 2,1	3,5 3,5 3,5 3,5 3,3	2,65 2,65 3,3 3,3 3,35	2,4 2,4 2,4 2,4 2,2	15 000 15 000 14 000 14 000 12 000	18 000 18 000 17 000 17 000 15 000	1204 1204K 2204 2204K 1304	0,120 0,120 0,140 0,140 0,160
	52 52 52	15 21 21	1,1 1,1 1,1	12,4 18,2 18,2	0,3 0,52 0,52	2,1 1,2 1,2	3,3 1,9 1,9	3,35 4,7 4,7	2,2 1,3 1,3	12 000 11 000 11 000	15 000 14 000 14 000	1304K 2304 2304K	0,160 0,210 0,210
25	52 52 52 52 52	15 15 15 18 18	1 1 1 1	12,2 12,2 12,2 12,5 12,5	0,29 0,29 0,29 0,43 0,43	2,2 2,2 2,2 1,5 1,5	3,4 3,4 3,4 2,3 2,3	3,3 3,3 3,3 3,45 3,45	2,3 2,3 2,3 1,6 1,6	13 000 13 000 13 000 11 000 11 000	16 000 16 000 16 000 14 000 14 000	1205 1205K 1205M 2205 2205K	0,140 0,140 0,140 0,160 0,160
	52 52 62 62 62	18 18 17 17 24	1 1 1,1 1,1 1,1	12,2 12,2 17,8 17,8 24,5	0,29 0,29 0,28 0,28 0,44	2,2 2,2 2,2 2,2 1,4	3,4 3,4 3,5 3,5 2,2	3,3 3,3 4,9 4,9 6,55	2,3 2,3 2,4 2,4 1,5	7 000 7 000 9 500 9 500 9 500	12 000 12 000 12 000	2205-2RS 2205K2RS 1305 1305K 2305	0,160 0,160 0,260 0,260 0,340
	62	24	1,1	24,5	0,44	1,4	2,2	6,55	1,5	9 500	12 000	2305K	0,340

Dim	ension	s			radial	load.F	actors	etat		Speed lis	mit	Designation	Weight
d	D	В	r _s min.	dyn. Cr	е	Y ₁	Y ₂	stat. Cor	Yo	grease	oil		
nm				kN	-			kN	_	min ⁻¹		-	kg
25	62	24	1,1	17,8	0,28	2,2	3,5	4,9	2,4	6 300		2305-2RS	0,330
30	62 62 62 62 62	16 16 20 20 20	1 1 1 1	15,7 15,7 15,3 15,3 15,3	0,25 0,25 0,4 0,4 0,4	2,5 2,5 1,6 1,6 1,6	3,9 3,9 2,5 2,5 2,5	4,7 4,7 4,6 4,6 4,6	2,7 2,7 1,7 1,7 1,7	10 000 10 000 9 500 9 500 9 500	13 000 13 000 12 000 12 000 12 000	1206 1206K 2206 2206K 2206M	0,220 0,220 0,260 0,260 0,260
	62 62 72 72 72	20 20 19 19 27	1 1 1,1 1,1 1,1	15,7 15,7 21,4 21,4 31,4	0,25 0,25 0,24 0,24 0,4	2,5 2,5 2,6 2,6 1,6	3,9 3,9 4,1 4,1 2,5	4,7 4,7 6,35 6,35 8,7	2,7 2,7 2,8 2,8 1,7	5 300 5 300 9 000 9 000 8 500	11 000 11 000 10 000	2206-2RS 2206K2RS 1306 1306K 2306	0,260 0,260 0,380 0,380 0,500
	72 72	27 27	1,1 1,1	31,4 21,4	0,4 0,24	1,6 2,6	2,5 4,1	8,7 6,35	1,7 2,8	8 500 5 600	10 000	2306K 2306-2RS	0,500 0,500
35	72 72 72 72 72 72	17 17 17 23 23	1,1 1,1 1,1 1,1 1,1	15,8 15,8 15,8 21,7 21,7	0,23 0,23 0,23 0,37 0,37	2,8 2,8 2,8 1,7 1,7	4,2 4,2 4,2 2,6 2,6	5,15 5,15 5,15 6,7 6,7	2,9 2,9 2,9 1,8 1,8	9 000 9 000 9 000 8 500 8 500	11 000 11 000 11 000 10 000 10 000	1207 1207K 1207M 2207 2207K	0,320 0,320 0,320 0,400 0,400
	72 72 80 80 80	23 23 21 21 31	1,1 1,1 1,5 1,5 1,5	15,8 15,8 25,1 25,1 39,7	0,23 0,23 0,25 0,25 0,43	2,8 2,8 2,5 2,5 1,5	4,2 4,2 3,9 3,9 2,3	5,15 5,15 7,95 7,95 12,9	2,9 2,9 2,7 2,7 1,6	5 600 5 600 7 500 7 500 7 000	9 000 9 000 8 500	2207-2RS 2207K2RS 1307 1307K 2307	0,400 0,400 0,510 0,510 0,670
	80 80	31 31	1,5 1,5	39,7 25,1	0,43 0,25	1,5 2,5	2,3 3,9	12,9 7,95	1,6 2,7	7 000 4 500	8 500	2307K 2307-2RS	0,670 0,670
40	80 80 80 80 80	18 18 23 23 23	1,1 1,1 1,1 1,1 1,1	19,2 19,2 22,4 22,4 22,4	0,22 0,22 0,33 0,33 0,33	2,9 2,9 1,9 1,9 1,9	4,5 4,5 3 3	6,5 6,5 7,4 7,4 7,4	3 2 2 2	8 500 8 500 7 500 7 500 7 500	10 000 10 000 9 000 9 000 9 000	1208 1208K 2208 2208K 2208M	0,410 0,410 0,500 0,500 0,500
	80 80 90 90 90	23 23 23 23 23 33	1,1 1,1 1,5 1,5 1,5	19,2 19,2 29,5 29,5 44,9	0,22 0,22 0,24 0,24 0,39	2,9 2,9 2,6 2,6 1,6	4,5 4,5 4,1 4,1 2,5	6,5 6,5 9,75 9,75 15,1	3 2,8 2,8 1,7	4 800 4 800 6 700 6 700 6 300	8 000 8 000 7 500	2208-2RS 2208K2RS 1308 1308K 2308	0,500 0,500 0,710 0,710 0,920
	90 90 90	33 33 33	1,5 1,5 1,5	44,9 44,9 29,5	0,39 0,39 0,24	1,6 1,6 2,6	2,5 2,5 4,1	15,1 15,1 9,75	1,7 1,7 2,8	6 300 6 300 4 000	7 500 7 500	2308K 2308M 2308-2R\$	0,920 0,920 0,920
45	85 85 85 85	19 19 23 23	1,1 1,1 1,1 1,1	21,8 21,8 23,3 23,3	0,21 0,21 0,31 0,31	3 3 2 2	4,7 4,7 3,1 3,1	7,4 7,4 8,15 8,15	3,2 3,2 2,1 2,1	7 500 7 500 7 000 7 000	9 000 9 000 8 500 8 500	1209 1209K 2209 2209K	0,460 0,460 0,540 0,540



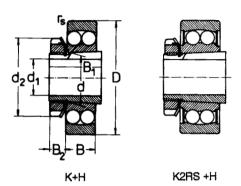
Dim	ension	18			radial	load.F	actors	atat		Speed li	mit	Designation	Weight
d .	D	В	r _s min.	dyn. Cr	е	Yt	Y ₂	stat. Cor	Y ₀	grease	oil		
mm				kN	_			kN	_	min ⁻¹		-	kg
45	85 85 100 100	23 23 25 25	1,1 1,1 1,5 1,5	21,8 21,8 37,7 37,7	0,21 0,21 0,24 0,24	3 2,6 2,6	4,7 4,7 4,1 4,1	7,4 7,4 12,9 12,9	3,2 3,2 2,8 2,8	4 500 4 500 6 300 6 300	7 500 7 500	2209-2RS 2209K2RS 1309 1309K	0,540 0,540 0,950 0,950
	100 100 100	36 36 36	1,5 1,5 1,5	54,1 54,1 37,7	0,31 0,31 0,24	2 2 2,6	3,1 3,1 4,1	16,5 16,5 12,9	2,1 2,1 2,8	5 600 5 600 3 600	6 700 6 700	2309 2309K 2309-2RS	1,23 1,23 1,23
50	90 90 90 90 90	20 20 23 23 23	1,1 1,1 1,1 1,1 1,1	22,9 22,9 23,3 23,3 22,9	0,21 0,21 0,29 0,29 0,21	3 2,2 2,2 3	4,7 4,7 3,4 3,4 4,6	8,1 8,16 8,5 8,5 8,1	3,2 3,2 2,3 2,3 3,2	7 000 7 000 6 300 6 300 4 000	8 500 8 500 7 500 7 500	1210 1210K 2210 2210K 2210-2RS	0,520 0,520 0,590 0,590 0,590
	90 110 110 110 110	23 27 27 40 40	1,1 2 2 2 2	22,9 43,4 43,4 64,4 64,4	0,21 0,24 0,24 0,42 0,42	3 2,6 2,6 1,5 1,5	4,6 4,1 4,1 2,3 2,3	8,1 14,2 14,2 20 20	3,2 2,8 2,8 1,6 1,6	4 000 5 600 5 600 5 300 5 300	6 700 6 700 6 300 6 300	2210K2RS 1310 1310K 2310 2310K	0,590 1,21 1,21 1,23 1,23
	110	40	2	43,4	0,24	2,6	4,1	14,2	2,8	3 400		2310-2RS	1,64
55	100 100 100 100 120	21 21 25 25 29	1,5 1,5 1,5 1,5 2	26,6 26,5 26,5 51,3	0,2 0,2 0,27 0,27 0,23	3,2 3,2 2,3 2,3 2,3	4,9 4,1 3,6 3,6 4,2	10,1 10,1 9,9 9,9 18,1	3,3 3,3 2,5 2,5 2,9	6 300 6 300 6 000 6 000 5 000	7 500 7 500 7 000 7 000 6 000	1211 1211K 2211 2211K 1311	0,700 0,700 0,810 0,810 1,58
	120 120 120	29 43 43	2 2 2	51,3 75,3 75,3	0,23 0,41 0,41	2,8 1,5 1,5	4,2 2,4 2,4	18,1 23,8 23,8	2,9 1,6 1,6	5 000 4 800 4 800	6 000 5 600 5 600	1311K 2311 2311K	1,58 2,10 2,10
60	110 110 110 110 130	22 22 28 28 31	1,5 1,5 1,5 1,5 2,1	30,2 30,2 33,8 33,8 57,1	0,19 0,19 0,28 0,28 0,23	3,4 3,4 2,2 2,2 2,8	5,2 5,2 3,5 3,5 4,2	11,6 11,6 12,6 12,6 20,8	3,5 3,5 2,4 2,4 2,9	5 600 5 600 5 300 5 300 4 500	6 700 6 700 6 300 6 300 5 300	1212 1212K 2212 2212K 1312	0,900 0,900 1,10 1,10 1,96
	130 130 130	31 46 46	2,1 2,1 2,1	57,1 87,1 87,1	0,23 0,41 0,41	2,8 1,5 1,5	4,2 2,4 2,4	20,8 28 28	2,9 1,6 1,6	4 500 4 300 4 300	5 300 5 000 5 000	1312K 2312 2312K	1,96 2,60 2,60
65	120 120 120 120 120 140	23 23 31 31 33	1,5 1,5 1,5 1,5 2,1	31 31 43,6 43,6 62	0,17 0,17 0,28 0,28 0,23	3,7 3,7 2,2 2,2 2,8	5,7 5,7 3,5 3,5 4,2	12,4 12,4 16,4 16,4 22,9	3,9 3,9 2,4 2,4 2,8	5 300 5 300 5 000 5 000 4 300	6 300 6 300 6 000 6 000 5 000	1213 1213K 2213 2213K 1313	1,15 1,15 1,45 1,45 2,45
	140 140 140	33 48 48	2,1 2,1 2,1	62 95,6 95,6	0,23 0,38 0,38	2,8 1,7 1,7	4,2 2,6 2,6	22,9 32,5 32,5	2,8 1,7 1,7	4 300 4 000 4 000	5 000 4 800 4 800	1313K 2313 2313K	2,45 3,25 3,25

Dim	ension	8			radial	load.F	actors	stat.		Speed lin	mit	Designation	Weight
d	D	В	rs min.	dyn. Cr	е	Y ₁	Y2	C _{Or}	Y ₀	grease	oil		
mm				kN	_			kN	-	min ⁻¹		-	kg
70	125 125 125 125 125 150	24 24 31 31 35	1,5 1,5 1,5 1,5 2,1	34,6 34,6 44,2 44,2 74,1	0,18 0,18 0,27 0,27 0,22	3,5 3,5 2,3 2,3 2,9	5,4 5,4 3,6 3,6 4,5	13,7 13,7 17,1 17,1 27,7	3,7 3,7 2,5 2,5 2,5	5 000 5 000 4 800 4 800 4 000	6 000 6 000 5 600 5 600 4 800	1214 1214K 2214 2214K 1314	1,25 1,25 1,50 1,50 3,00
	150	35	2,1	74,1	0,22	2,9	4,5	27,7	3	4 000	4 800	1314K	3,00
	150	51	2,1	111	0,35	1,8	2,8	31,7	1,9	3 600	4 300	2314	3,90
	150	51	2,1	111	0,35	1,8	2,8	31,7	1,9	3 600	4 300	2314K	3,90
75	130	25	1,5	38,9	0,18	3,5	5,4	15,6	3,7	4 800	5 600	1215	1,35
	130	25	1,5	38,9	0,18	3,5	5,4	15,6	3,7	4 800	5 600	1215K	1,35
	130	31	1,5	44	0,25	2,5	3,9	17,8	2,7	4 500	5 300	2215	1,60
	130	31	1,5	44	0,25	2,5	3,9	17,8	2,7	4 500	5 300	2215K	1,60
	160	37	2,1	79,2	0,22	2,9	4,5	30	3	3 600	4 300	1315	3,55
	160	37	2,1	79,2	0,22	2,9	4,5	30	3	3 600	4 300	1315K	3,55
	160	55	2,1	123	0,38	1,7	2,6	42,8	1,7	3 400	4 000	2315	4,70
	160	55	2,1	123	0,38	1,7	2,6	42,8	1,7	3 400	4 000	2315K	4,70
	160	55	2,1	123	0,38	1,7	2,6	42,8	1,7	3 400	4 000	2315KM	4,70
80	140 140 140 140 170	26 26 33 33 39	2 2 2 2,1	39,8 39,8 48,8 48,8 88,4	0,16 0,16 0,26 0,26 0,22	3,9 3,9 2,4 2,4 2,9	6,1 6,1 3,7 3,7 4,5	17 17 19,9 19,9 33	4,1 4,1 2,5 2,5 3	4 300 4 300 4 000 4 000 3 400	5 000 5 000 4 800 4 800 4 000	1216 1216K 2216 2216K 1316	1,65 1,65 2,00 2,00 4,20
	170	39	2,1	88,4	0,22	2,9	4,5	33	3	3 400	4 000	1316K	4,20
	170	58	2,1	136	0,34	1,9	2,9	48,5	2	3 200	3 800	2316	6,10
	170	58	2,1	136	0,34	1,9	2,9	48,5	2	3 200	3 800	2316K	6,10
	170	58	2,1	136	0,34	1,9	2,9	48,5	2	3 200	3 800	2316M	6,10
85	150	28	2	48,2	0,17	3,7	5,7	20,8	3,9	4 000	4 800	1217	2,05
	150	28	2	48,2	0,17	3,7	5,7	20,8	3,9	4 000	4 800	1217K	2,05
	150	36	2	58,5	0,25	2,5	3,9	23,8	2,7	3 800	4 800	2217	2,50
	150	36	2	58,5	0,25	2,5	3,9	23,8	2,7	3 800	4 500	2217K	2,50
	150	41	3	97,5	0,22	2,9	4,5	37,9	3	3 200	4 800	1317	5,00
	180	41	3	97,5	0,22	2,9	4,5	37,9	3	3 200	3 800	1317K	5,00
	180	60	3	140	0,37	1,7	2,6	51,5	1,8	3 000	3 600	2317	7,05
	180	60	3	140	0,37	1,7	2,6	51,5	1,8	3 000	3 600	2317K	7,05
90	160 160 160 160 190	30 30 40 40 43	22223	57 57 70,2 70,2 117	0,17 0,17 0,27 0,27 0,22	3,7 3,7 2,3 2,3 2,9	5,7 5,7 3,6 3,6 4,5	23,1 23,1 27,2 27,2 44,5	3,9 3,9 2,5 2,5 3	3 800 3 800 3 600 3 600 3 000	4 500 4 500 4 300 4 300 3 600	1218 1218K 2218 2218K 1318	2,50 2,50 3,40 3,40 5,80
	190	43	3	117	0,22	2,9	4,5	44,5	3	3 000	3 600	1318K	5,80
	190	64	3	153	0,38	1,7	2,6	57,7	1,7	2 800	3 400	2318	8,45
	190	64	3	153	0,38	1,7	2,6	57,7	1,7	2 800	3 400	2318K	8,45



Dim	ension	8		Basic	radial	load.F	actors	atat		Speed lis	mit	Designation	Weight
d	D	В	r _s min.	dyn. Cr	е	Y ₁	Y ₂	etat. Cor	Y ₀	grease	oil		
mm				kN	_			kN	-	min ⁻¹		-	kg
95	170 170 200 200	32 32 45 45	2,1 2,1 3 3	63,7 63,7 133 133	0,17 0,17 0,23 0,23	3,7 3,7 2,8 2,8	5,7 5,7 4,2 4,2	24,3 24,3 50,8 50,8	3,9 3,9 2,9 2,9	3 400 3 400 2 800 2 800	4 000 4 000 3 400 3 400	1219 1219K 1319 1319K	3,10 3,10 6,70 6,70
100	180 180 180 180 215	34 34 46 46 47	2,1 2,1 2,1 2,1 3	68,9 68,9 97,5 97,5 143	0,17 0,17 0,24 0,24 0,24	3,7 3,7 2,6 2,6 2,6	5,7 5,7 4,1 4,1 4,1	29,7 29,7 34 34 57,3	3,9 3,9 2,8 2,8 2,8	3 200 3 200 3 200 3 200 2 600	3 800 3 800 3 800 3 800 3 200	1220 1220K 2220 2220K 1320	3,70 3,70 5,00 5,00 8,30
	215 215 215	47 73 73	3 3 3	143 193 193	0,24 0,34 0,34	2,6 1,9 1,9	4,1 2,9 2,9	57,3 73,4 73,4	2,8 2 2	2 600 2 400 2 400	3 200 3 000 3 000	1320K 2320 2320K	8,30 12,2 12,5
110	200 200 200 200 240	38 53 53 50	2,1 2,1 2,1 2,1 3	88 88 124 124 163	0,17 0,17 0,26 0,26 0,22	3,7 3,7 2,4 2,4 2,9	5,7 5,7 3,7 3,7 4,5	35,2 35,2 48,9 48,9 67,5	3,9 3,9 2,5 2,5 3	2 800 2 800 2 800 2 800 2 400	3 400 3 400 3 400 3 400 3 000	1222 1222K 2222 2222K 1322	5,15 5,15 7,10 7,10 12,0
	240	50	3	163	0,22	2,9	4,5	67,5	3	2 400	3 000	1322K	12,0

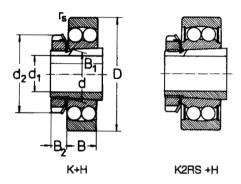
Self-aligning ball bearings with extended inner ring



Dim	ensior	18					radial	load.	Factor			Speed I	imit	Designation	Weight
d ¹⁾	D	С	В	D ₁	rs min.	dyn. Cr	е	Y ₁	Y ₂	stat. Cor	Yo	grease	oil		
mm						kN	-			kN	_	min ⁻¹		-	kg
20	47	14	40	29,2	1	9,9	0,28	2,2	3,5	2,65	2,4	7 100	9 000	11204	0,180
	52	15	44	31,5	1,1	12,4	0,3	2,1	3,3	3,35	2,2	8 000	6 300	11304	0,270
25	52	15	44	33,3	1	12,2	0,29	2,2	3,4	3,3	2,3	6 300	8 000	11205	0,220
	62	17	48	38	1,1	17,8	0,28	2,2	3,5	4,9	2,4	5 000	6 300	11305	0,410
30	62	16	48	40,1	1	15,7	0,25	2,5	3,9	4,7	2,7	5 000	6 300	11206	0,350
	72	19	52	45	1,1	21,4	0,24	2,6	4,1	6,35	2,8	4 000	5 000	11306	0,610
35	72	17	52	47,7	1,1	15,8	0,23	2,8	4,2	5,15	2,9	4 000	5 000	11207	0,540
	80	21	56	51,7	1,5	25,1	0,25	2,5	3,9	7,95	2,7	3 600	4 500	11307	0,810
40	80	18	56	54	1,1	19,2	0,22	2,9	4,5	6,5	3	3 600	4 500	11208	0,720
	90	23	58	57,7	1,5	29,5	0,24	2,6	4,1	9,75	2,8	3 200	4 000	11308	1,08
45	85	19	58	57,7	1,1	21,8	0,21	3	4,7	7,4	3,2	3 600	4 500	11209	0,770
	100	25	60	63,9	1,5	37,7	0,24	2,6	4,1	12,8	2,8	2 800	3 600	11309	1,38
50	90	20	58	62,7	1,1	22,9	0,21	3	4,7	8,1	3,2	3 200	4 000	11210	0,850
	110	27	62	70,3	2	43,4	0,24	2,6	4,1	14,1	2,8	2 500	3 200	11310	1,72
55	100	21	60	69,5	1,5	26,6	0,2	3,2	4,9	10,0	3,3	2 800	3 600	11211	1,13
6 0	110	22	62	78	1,5	30,2	0,19	3,4	5,2	11,6	3,5	2 500	3200	11212	1,50

¹⁾ Tolerance J7

Adapter assemblies for Self-aligning ball bearings

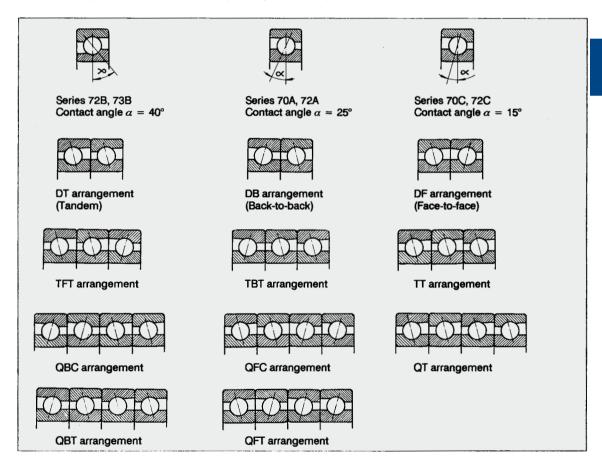

Dimer	nsions							Designation		Weight
d ₁	d	D	В	r _s min.	d ₂	81	B ₂	bearing	adapter sleeve	
mm								-		kg
17	20 20 20 20	47 47 52 52	14 18 15 21	1 1 1,1 1,1	32 32 32 32	24 28 28 31	7 7 7 7	1204K 2204K 1304K 2304K	H204 H304 H304 H2304	0,167 0,201 0,221 0,281
20	25 25 25 25 25 25	52 52 52 62 62	15 18 18 17 24	1 1 1 1,1 1,1	38 38 38 38 38	26 29 29 29 35	8 8 8 8	1205K 2205K 2205K2RS 1305K 2305K	H205 H305 H305 H305 H2305	0,219 0,233 0,236 0,227 0,414
25	30 30 30 30 30	62 62 62 72 72	16 20 20 19 27	1 1 1 1,1 1,1	45 45 45 45 45	27 31 31 31 38	8 8 8 8	1206K 2206K 2206K2RS 1306K 2306K	H206 H306 H306 H306 H2306	0,33 0,363 0,363 0,49 0,615
30	35 35 35 35 35	72 72 72 80 80	17 23 23 21 31	1,1 1,1 1,1 1,5 1,5	52 52 52 52 52	29 35 35 35 43	9 9 9 9	1207K 2207K 2207K2RS 1307K 2307K	H207 H307 H307 H307 H307	0,422 0,538 0,538 0,644 0,822
35	40 40 40 40 40	80 80 80 90 90	18 23 23 23 23 33	1,1 1,1 1,1 1,5 1,5	58 58 58 58 58	31 36 36 36 46	10 10 10 10 10	1208K 2208K 2208K2RS 1308K 2308K	H208 H308 H308 H308 H2308	0,585 0,683 0,683 0,893 1,13
40	45 45 45 45 45	85 85 85 100 100	19 23 23 25 36	1,1 1,1 1,1 1,5 1,5	65 65 65 65	33 39 39 39 50	11 11 11 11	1209K 2209K 2209K2RS 1309K 2309K	H209 H309 H309 H309 H2309	0,686 0,781 0,781 1,19 1,48
45	50 50 50 50 50	90 90 90 110 110	20 23 23 27 40	1,1 1,1 1,1 2 2	70 70 70 70 70	35 42 42 42 55	12 12 12 12 12	1210K 2210K 2210K2RS 1310K 2310K	H210 H310 H310 H310 H2310	0,789 0,88 0,88 1,49 1,96
50	55 55 55 55	100 100 120 120	21 25 29 43	1,5 1,5 2 2	75 75 75 75	37 45 45 59	12 12 12 12	1211K 2211K 1311K 2311K	H211 H311 H311 H2311	1 1,2 1,91 2,47
55	60 60 60	110 110 130 130	22 28 31 46	1,5 1,5 2,1 2,1	80 80 80 80	38 47 47 62	13 13 13 13	1212K 2212K 1312K 2312K	H212 H312 H312 H2312	1,03 1,55 2,32 3,01
60	65	120	23	1,5	85	40	14	1213K	H213	1,53

Basic ra	dial load. Fa	ctors				Speed limit		
dyn. Cr	е	Y ₁	Y ₂	stat. Cor	Yo	grease	oil	
kN	_			kN	-	min ⁻¹		
9,9 12,6	0,28	2,2 2,2 2,1 1,2	3,5 3,5 3,3 1,9	2,65 3,3	2,4 2,4 2,2 1,3	15 000	18 000	
12,6 12,4	0,28 0,3	2,2	3,5	3,3 3,35	2,4	14 000 12 000	17 000 15 000	
18,2	0,52	1,2	1,9	4,7	1,3	14 000 12 000 11 000	14 000	
12,2	0,29	2,2	3,4	3,3	2,3	13 000	16 000	
12,5	0,43	1,5	2,3	3,45 3,3	1,6	11 000 7 000	14 000	
12,2	0,29 0,43 0,29 0,28	2,2	3,4 3.5	3,3 4,9	2,3	/ 000 9 500	12 000	
12,2 12,5 12,2 17,8 24,5	0,28 0,44	2,2 1,5 2,2 2,2 1,4	3,4 2,3 3,4 3,5 2,2	6,55	2,3 1,6 2,3 2,4 1,5	9 500 9 500	12 000	
	0,25			4,7		10 000	13 000	
15,7 15,3 15,7	0.4	2,5 1,6	2,5	4.6	1,7	9 500	12 000	
15,7	0.25	2.5	3,9 2,5 3,9 4,1 2,5	4.7	2,7 1,7 2,7 2,8 1,7	5 300 9 000		
21.4	0,24	2,6	4,1	6,35 8,7	2,8	9 000 8 500	11 000	
31,4	0,4	1,6					10 000	
15,8	0,23	2,8 1,7	4,2	5,15	2,9 1,8	9 000	11 000	
21,7	0,37	1,7	2,6	6,7	1,8	8 500 5 600	10 000	
15,8 25.1	0,23	2,8 2.5	4,2 3 9	5,15 7.95	2, 9 2,7	7 500 7 500	9.000	
15,8 21,7 15,8 25,1 39,7	0,23 0,37 0,23 0,25 0,43	2,8 2,5 1,5	4,2 2,6 4,2 3,9 2,3	5,15 7,95 12,9	2,9 2,7 1,6	8 500 5 600 7 500 7 000	9 000 8 500	
						8 500	10 000	
19,2 22,4 19,2	0,33	2,9 1,9	4,5 3	6,5 7,4	ž	7.500	9 000	
19,2	0,22	2.9	4.5	6,5	3	4 800	0.000	
29,5 44,9	0,22 0,33 0,22 0,24 0,39	2,6 1,6	4,1 2,5	9,75 15,1	3 2 3 2,8 1,7	4 800 6 700 6 300	8 000 7 500	
•								
21,8 23,3 21,8	0,21 0,31	3	4,/ 3.1	7,4 8,15	3,2 2 1	7 500 7 000	9 000 8 500	
21.8	0.21	3 2 3	4,7 3,1 4,7	7.4	3,2	4 500	0 000	
37,7	0,21 0,24 0,31	2,6 2	4,1 3,1	12,9 16,5	3,2 2,1 3,2 2,8 2,1	7 000 4 500 6 300	7 500	
54,1		. 2	3,1	16,5		5 600	6 700	
22,9 23,3	0,21	3	4,7 3,4	8,16 8,5	3,2	7 000 6 300 4 000	8 500 7 500	
23,3	0,29	2,2	3,4	8,5	2,3	6 300	7 500	
22,9	0,21	3 2,6	4,6	8,1 14,2	3,2 2,8	4 000 5 600	6 700	
43,4 64,4	0,21 0,29 0,21 0,24 0,42	2,6 1,5	4,6 4,1 2,3	20	3,2 2,3 3,2 2,8 1,6	5 300	6 300	
26.6		32		10.1		6 300	7 500	
26,6 26,5 51,3 75,3	0,2 0,27 0,23 0,41	3,2 2,3 2,8 1,5	4,1 3,6 4,2 2,4	10,1 9,9	3,3 2,5 2,9 1,6	6 300 6 000 5 000	7 500 7 000 6 000	
51,3	0,23	2,8	4,2	18.1	2,9	5 000	6 000	
75,3	0,41	1,5	2,4	23,8	1,6	4 800	5 600	
30,2 33,8 57,1	0,19	3,4	5,2	11,6	3,5	5 600	6 700	
33,8	0,28	2,2	3,5	12.6	2.4	5 300	6 300 5 300	
57,1 87,1	0,19 0,28 0,23 0,41	3,4 2,2 2,8 1,5	5,2 3,5 4,2 2,4	20,8 28	2,9 1,6	4 500 4 300	5 300 5 000	
31	0,17	3,7	5,7	12,4	3,9	5 300	6 300	

Adapter assemblies for Self-aligning ball bearings

	_	_			_	_	Designation bearing	adapter	Weight
d	D	В	rs min.	d ₂	B ₁	B ₂		sleeve	
							-		kg
65 65 65	120 140 140	31 33 48	1,5 2,1 2,1	85 85 85	50 50 65	14 14 14	2213K 1313K 2313K	H313 H313 H2313	2,00 2,87 3,71
75 75 75	130 130 160	25 31 37	1,5 1,5 2,1	98 98 98	43 55 55	15 15 15	1215K 2215K 1315K	H215 H315 H315	2,05 2,52 4,34
75	160	55	2,1	98	73	15	2315K	H2315	5,66
80 80 80 80	140 140 170 170	26 33 39 58	2 2 2,1 2,1	105 105 105 105	46 59 59 78	17 17 17 17	1216K 2216K 1316K 2316K	H216 H316 H316 H2316	2,52 3,18 5,33 7,24
85 85 85 85	150 150 180 180	28 36 41 60	2 2 3 3	110 110 110 110	50 63 63 82	18 18 18 18	1217K 2217K 1317K 2317K	H217 H317 H317 H2317	3,06 3,85 6,27 8,34
90 90 90 90	160 160 190 190	30 40 43 64	2 2 3 3	120 120 120 120	52 65 65 86	18 18 18 18	1218K 2218K 1318K 2318K	H218 H318 H318 H2318	3,67 4,74 7,36 9,94
95 95	170 200	32 45	2,1 3	125 125	55 68	19 19	1219K 1319K	H219 H319	4,42 8,30
100 100 100 100	180 180 215 215	34 46 47 73	2,1 2,1 3 3	130 130 130 130	58 71 71 97	20 20 20 20	1220K 2220K 1320K 2320K	H220 H320 H320 H2320	5,13 6,63 9,96 14,3
110 110 110	200 200 240	38 53 50	2,1 2,1 3	145 145 145	63 77 77	21 21 21	1222K 2222K 1322K	H222 H322 H322	7,00 9,15 13,9
	75 75 80 80 85 85 85 90 90 90 95 95 100 100 110 110 110	65 140 75 130 75 130 75 160 75 160 80 140 80 170 80 170 85 150 85 150 85 180 90 160 90 190 90 190 90 190 91 170 95 200 100 180 100 215 100 215	75 130 25 75 130 31 75 160 37 75 160 55 80 140 26 80 140 33 80 170 39 80 170 58 85 150 28 85 150 36 85 180 41 85 180 60 90 160 40 90 190 43 90 190 43 90 190 64 95 170 32 95 200 45 100 180 34 100 180 34 100 215 47 100 215 73	65 120 31 1,5 65 140 33 2,1 65 140 48 2,1 75 130 31 1,5 75 130 31 1,5 75 160 37 2,1 75 160 55 2,1 80 140 26 2 80 140 33 2,1 80 170 39 2,1 80 170 58 2,1 85 150 36 2 85 150 36 2 85 180 41 3 85 180 60 3 90 160 30 2 90 160 40 2 90 190 43 3 90 190 44 3 95 170 32 2,1 95 200 45 3	65 120 31 1.5 85 65 140 33 2.1 85 65 140 48 2.1 85 75 130 25 1.5 98 75 160 37 2.1 98 75 160 55 2.1 98 80 140 26 2 105 80 140 33 2 105 80 170 39 2.1 105 80 170 39 2.1 105 85 150 28 2.1 105 85 150 28 2 110 85 180 41 3 110 85 180 41 3 110 85 180 60 3 110 90 160 30 2 120 90 190 43 3 120 90 190 44 3 125 95 200 45 3 125	65 120 31 1,5 85 50 65 140 33 2,1 85 65 75 130 25 1,5 98 55 75 130 31 1,5 98 55 75 160 37 2,1 98 55 75 160 55 2,1 98 73 80 140 26 2 105 46 80 140 33 2 105 59 80 170 39 2,1 105 59 80 170 58 2,1 105 78 85 150 28 2 110 63 85 180 41 3 110 63 85 180 41 3 110 63 85 180 60 3 110 82 90 160 30 2 120 52 90 190 43 3 120 65 90 190 43 3 120 86 95 170 32 2,1 125 55 96 200 45 3 125 68 100 180 34 2,1 130 71 100 215 47 3 130 71 100 215 47 3 130 71 100 215 47 3 130 71	65	65 120 31 1,5 85 50 14 2213K 65 140 33 2,1 85 65 14 2313K 65 140 48 2,1 85 65 14 2313K 75 130 25 1,5 98 55 15 1215K 75 160 37 2,1 98 55 15 1215K 75 160 37 2,1 98 55 15 1315K 75 160 37 2,1 98 55 15 1315K 75 160 37 2,1 98 73 15 2315K 80 140 33 2 105 59 17 2216K 80 140 33 2 105 59 17 2216K 80 170 39 2,1 105 59 17 2216K 80 170 39 2,1 105 59 17 1316K 80 170 38 2,1 105 78 17 2316K 85 150 28 2,1 105 78 17 2316K 85 150 28 2,1 105 63 18 1217K 85 150 28 2 110 63 18 1217K 85 180 60 3 110 63 18 2217K 85 180 60 3 110 63 18 2217K 85 180 60 3 110 82 18 2317K 90 160 30 2 120 52 18 1218K 90 190 43 3 120 65 18 2218K 90 190 43 3 120 65 18 2318K 95 170 32 2,1 125 55 19 1219K 95 200 45 3 125 68 19 1319K	65 120 31 1,5 85 50 14 2213K H313 65 140 33 2,1 85 50 14 1313K H3313 75 140 33 1,5 98 43 15 1215K H215 75 130 25 1,5 98 55 15 2215K H315 75 160 37 2,1 98 55 15 1315K H315 75 160 37 2,1 98 73 15 2315K H2315 75 160 55 2,1 98 73 15 2315K H2315 75 160 55 2,1 98 73 15 2315K H2315 80 140 26 2 105 46 17 1216K H216 80 140 33 2 105 59 17 2216K H316 80 170 39 2,1 105 59 17 2216K H316 80 170 58 2,1 105 59 17 1316K H316 80 170 58 2,1 105 78 17 2316K H2316 85 150 36 2 110 63 18 1217K H2316 85 150 36 2 110 63 18 2217K H317 85 180 60 3 110 63 18 2217K H317 85 180 60 3 110 82 18 2317K H2317 90 160 30 2 120 52 18 1218K H2317 90 160 40 2 120 65 18 2218K H318 90 190 64 3 120 86 18 2217K H317 85 180 60 3 120 65 18 2218K H318 90 190 64 3 120 86 18 2218K H318 90 190 64 3 120 86 18 2318K H2318 95 170 32 2,1 130 58 20 1220K H318 95 170 32 2,1 130 58 20 1220K H318 95 170 32 2,1 130 58 20 1220K H320 100 215 73 3 130 97 20 2320K H320 100 215 73 3 130 97 20 2320K H320 100 215 73 3 130 97 20 2320K H320 100 215 73 3 130 97 20 2320K H320 100 215 73 3 130 97 20 2320K H320

Basi. ra	dial load. Fa	actors				Speed limit		
dyn. Cr	е	Y ₁	Y2	stat. Cor	Y ₀	grease	oil	
kN	-			kN	-	min ⁻¹		
43,6	0,28	2,2	3,5	16,4	2,4	5 000	6 000	
62	0,23	2,8	4,2	22,9	2,8	4 300	5 000	
95,6	0,38	1,7	2,6	32,5	1,7	4 000	4 800	
38,9	0,18	3,5	5,4	15,6	3,7	4 800	5 600	
44	0,25	2,5	3,9	17,8	2,7	4 500	5 300	
79,2	0,22	2,9	4,5	30	3	3 600	4 300	
123	0,38	1,7	2,6	42,8	1,7	4 300	4 000	
39,8	0,16	3,9	6,1	17	4,1	4 300	5 000	
48,8	0,26	2,4	3,7	19,9	2,5	4 000	4 800	
88,4	0,22	2,9	4,5	33	3	3 400	4 000	
136	0,34	1,9	2,9	48,5	2	3 200	3 800	
48,8	0,17	3,7	5,7	20,8	3,9	4 000	4 800	
58,5	0,25	2,5	3,9	23,8	2,7	3 800	4 500	
97,5	0,22	2,9	4,5	37,9	3	3 200	3 800	
140	0,37	1,7	2,6	51,5	1,8	3 000	3 600	
57	0,17	3,7	5,7	23,1	3,9	3 800	4 500	
70,2	0,27	2,3	3,6	27,2	2,5	3 600	4 300	
117	0,22	2,9	4,5	44,5	3	3 000	3 600	
153	0,38	1,7	2,6	57,7	1,7	2 800	3 400	
63,7	0,17	3,7	5,7	24,3	3,9	3 400	4 000	
133	0,23	2,8	4, 2	50,8	2,9	2 800	3 400	
68,9	0,17	3,7	5,7	29,7	3,9	3 200	3 800	
97,5	0,24	2,6	4,1	34	2,8	2 200	3 800	
143	0,24	2,6	4,1	57,3	2,8	2 600	3 200	
193	0,34	1,9	2,9	73,4	2	2 400	3 000	
88	0,17	3,7	5,7	35,2	3,9	2 800	3 400	
124	0,26	2,4	3,7	48,9	2,5	2 800	3 400	
163	0,22	2,9	4,5	67,5	3	2 400	3 000	



Angular contact ball bearings

Single row angular contact ball bearings are manufactured in various constructive versions, with various contact angles, depending on the application. Bearings series 72B and 73B for general applications have a contact angle $\alpha=40^\circ$. Bearings series 718, 719, 70 and 72 generally used

for tool-holders, have phenol resins (textolite) cages or machined brass cages. Those with bore diameters up to d = 100 mm are manufactured to tolerance classes P5, P4 and P2 and have a contact angle of 15° (C) and 25° (A) respectively.

Suffixes

CC

D

DT

Ε

FA

FB

GA

GB

GC

M

М

MA

MB

O

P6

P5

P4

P2

Q

QBC

QFC

QFT

OT

SO

S

Α	 bearing with extended outer ring
Α	- bearing with contact angle $\alpha = 25^{\circ}$
A1	- bearing with contact angle $\alpha = 30^{\circ}$
A2	- bearing with contact angle $\alpha = 36^{\circ}$
A10	booring with appointed realist a

A10.. bearing with specified radial and axial clearance

В - bearing with extended outer ring В - bearing with contact angle $\alpha = 40^{\circ}$

BB - bearing with $\alpha = 40^{\circ}$ and extended inner ring

- bearing with contact angle $\alpha = 15^{\circ}$

CA - bearing with radial clearance smaller than

CB - bearing with normal radial clearance

> - radial bearing with axial clearance larger than normal

- two bearings set

D - bearing with two-pieces inner ring DB

- two bearings set in back-to-back arrangement, (O)

DF - two bearings set in face-to-face arrangement, (X)

- two bearings set in tandem arrangement

- bearing with contact angle $\alpha = 20^{\circ}$

- special prescriptions

F2 - modified construction

> - bearing with machined cage of steel or cast iron, guided in the outer ring

- bearing with machined cage of steel or cast iron guided on the inner ring

light preload, bearings series 72B, 73B

moderate preload, bearings series 72B, 73B

heavy preload, bearings series 72B, 73B

 light preload, bearings series 70C, 70A, 72A moderate preload, bearings series 70C, 70A, 72A

- machined brass cage, ball guided

machined brass cage, guided in the outer ring

- machined brass cage, guided on the inner ring

- bearing set without axial clearance PO

normal tolerance class

tolerance class more accurate than normal

- tolerance class more accurate than P6

- tolerance class more accurate than P5

- tolerance class more accurate than P4

- four bearings set

- tandem pairs in O arrangement

QBT - tandem pairs plus O arrangement

- tandem pairs in X arrangement

- tandem pairs plus X arrangement

tandem pairs

- heavy preload, bearings series 70C, 70A, 72A

- bearings operating up to a temperature of +150°C

S1 - bearings operating up to a temperature of +200°C

т - three bearings set

- bearing set total width (T168, T200)

- three bearings set in O arrangement, plus T

- three bearings set in X arrangement, plus T

- three bearings set in tandem arrangement

- polyamide cage

-full complement bearing W8

- lubricating grooves on one side of the outer

- bearings of universal design, with deviations of d and D, from table 1 on page 175 and Ki. Ka in P2 class

UA - bearings with small axial clearance at DB and DF arrangements

UL bearings with light preload at DB and DF arrangements

uo - bearings without small axial clearance at DB and DF arrangements

UP - tolerance class with deviations of d and D in P4 class and of Ki and Ke in P2 class.

Single row angular contact ball bearings can take only one direction axial loads. When being radially loaded, in bearing occurs an axially acting load which has to be compensated.

For this reason, a bearing or paired bearings are mounted on each shaft end.

Single row angular contact ball bearings with B suffix have a contact angle $\alpha = 40^{\circ}$ and are suitable in case of heavy loads.

These bearings are not dismountable and their use at relatively high speeds is allowed.

Pair mounting of bearings as shown in figures on page 173 is used when the load carrying capacity of a single bearing is inadequate (tandem arrangement), respectively when axial loads have to be taken in both directions (DB or DF arrangements).

In case of DT tandem arrangement, the contact lines are in parallel. Radial and axial loads are uniformly distributed on both bearings. The bearing pair can take axial loads in only one direction. Therefore, a third bearing should take axial loads in the opposite direction.

In case of DB arrangement, the contact lines diverge towards the bearing axis and form letter "O". Axial loads are taken in both directions, but only by one single bearing for each direction.

DB arrangement is considered to be a relatively stiff arrangement and can also take tilting moments.

The contact lines of DF arrangement converge towards the bearing axis and form letter "X". Axial loads are taken in the same way as in case of DB arrangement, but the arrangement is not so stiff and it is less suitable for taking tilting moments.

Universal design

Single row angular contact ball bearings of universal design are suitable for DB, DF and DT arrangements.

Bearings of universal design are manufactured to more accurate tolerance classes and can be matched if the mounting conditions UA, UO and UL are observed.

The values of clearance or preload are obtained when the shaft is manufactured to tolerance class i5 and the housing bore to tolerance class J6.

T **TBT**

TFT

П

Dimensions

Main dimensions of bearings given in tables are in accordance with ISO/R15 and national standard 7416, respectively.

Misalignment

In case of single row angular contact ball bearings the conditions regarding the permissible error of alignment of the outer ring relative to the inner ring are as complex as for single row deep groove ball bearings.

When the bearings are paired in DB arrangement, angular misalignments of the outer ring in relation to the inner ring can only be accommodated between the balls and raceways by force, leading to a reduction in bearing life.

Tolerances

Single row angular contact ball bearings of series 72B and 73B, with a contact angle $\alpha=40^{\circ}$ (B) are generally manufactured to the normal tolerance class.

At request, they also can be manufactured to normal tolerance classes P6 and P5.

Single row angular contact ball bearings of high accuracy, series 70C, 72C, 70A and 72A, with a contact angle $\alpha = 15^{\circ}$ (C) and $\alpha = 25^{\circ}$ are manufactured to tolerance classes SP, P4. UP and P2.

The deviations of bore diameter, outside diameter and width of high accuracy single row angular contact ball bearings of universal design (UL) are given in table 1.

In case of single row angular contact ball bearings manufactured and delivered in sets of 2, 3 or 4 bearings, outside and bore diameter should be chosen considering

Deviations of main dimensions of high accuracy single row angular contact bearings

Deviations in µm

Bore d (mm)		∆dmp, ∆D P4	mp	UP		P2		ΔBS	
over	up to	low	high	low	high	low	high	low	high
-	18	-3	-1	-3	-1	-2	0	-250	0
18	30	-3,5	-1,5	-3	-1	-2	0	-250	0
30	50	-4	-1,5	-3	-1	-2	0	-250	0
50	80	-5	-2	~3,5	-1,5	-3	-1	-250	0
80	120	-5,5	-2			-3,5	1,5	-380	0

Contact angle

In case of single row angular contact ball bearings, the efforts between rings and rolling elements (contact points of rolling elements/ outer or inner ring) are transmitted at an angle α (< 90°) to a plane perpendicular to the bearing axis.

The value of this angle depends on the magnitude of the raceway radius, rolling element diameter and radial clearance in bearing, when the curvature centres of the raceways in the outer or on the inner ring are in the same plane.

The contact angle α can be calculated and verified in accordance with the specifications

the mean tolerance values, which are given on the package.

Axial clearance - preload

Axial clearance or preload can be obtained only when single row angular contact ball bearing is mounted in the assembly and depends on the location of the second bearing which assures the shaft axial guiding.

Single row angular contact ball bearings series 72B and 73B, paired mounted in DB and DF arrangements are manufactured with normal axial clearance CB, smaller than normal, CA, larger than normal, CC, or with light preload, GA, moderate preload GB, or heavy preload, GC, according to the values given in table 2.

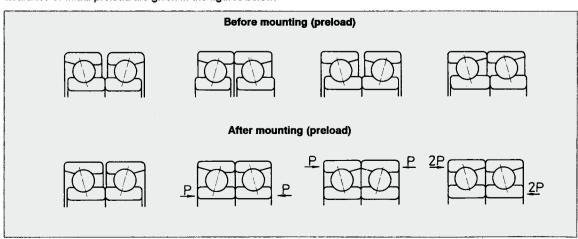
High accuracy single row angular contact ball bearings

Axial clearance or preload of single row angular contact ball bearings series 72B and 73B, pair mounted in DB or DF arrangements

Table 2

Bore d		Axial clearance CA CB			CC	Preload CC GA			GB					GC				
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	min.	max.	min.	max.	min.	ma.x	min.	max.
mm		μm								N	μm		N		μm		N	
_	10	4	12	14	22	22	30	_	_	_	_	_	_	_	_	_	-	_
10	18	5	13	15	23	24	32	+4	-4	80	-2	-10	30	330	-8	-16	230	260
18	30	7	15	18	26	32	40	+4	-4	120	-2	-10	40	480	-8	-16	340	970
30	50	9	17	22	30	40	48	+4	-4	160	-2	-10	60	630	-8	-16	450	1280
50	80	11	23	26	38	48	60	+6	-6	380	-3	-15	140	1500	~12	-24	1080	3050
80	120	14	26	32	44	55	67	+6	-6	410	-3	-15	150	1600	-12	-24	1150	3250
120	180	17	29	35	47	62	74	+6	-6	540	-3	~15	200	2150	-12	-24	1500	4300
180	250	21	37	45	61	74	90	+8	-8	940	-4	~20	330	3700	-16	-32	2650	7500
250	315	26	42	52	68	90	106	+8	-8	1080	-4	-20	380	4250	-16	~32	3000	8600

series 70C, 70A and 72A, with a contact angle $\alpha=15^{\circ}(C)$ and $\alpha=25^{\circ}$ (A), which are generally used for grinding stone holders, paired mounted in DB and DF arrangement, are


manufactured with an initial preload. It can be: light (L), moderate (M), heavy (S). The values of these preloads are given in table 3.

Values of axial preload of bearings of series 70C, 70A and 72A, in DB and DF arrangements

Table 3

Bore		Axial p Series				Series '	72C			Series 7	roA		Series 72
d	Symbol	L	M	s	L	M	s	L	M	s	L	M	s
mm	-	N											
10	00	15	30	60	20	40	80	25	50	100	35	70	140
12	01	15	30	60	20	40	80	25	50	100	35	70	140
15	02	20	40	80	30	60	120	30	60	120	45	90	180
17	03	25	50	100	35	70	140	40	80	160	60	120	240
20	04	35	70	140	45	90	180	50	100	200	70	140	280
25	05	35	70	140	50	100	200	60	120	240	80	160	320
30	06	50	100	200	90	180	360	90	180	360	150	300	600
35	07	60	120	240	120	240	480	90	180	360	190	380	760
40	08	60	120	240	150	300	600	100	200	400	240	480	960
45	09	110	220	440	160	320	640	170	340	680	260	520	1040
50	10	110	220	440	170	340	680	180	360	720	260	520	1040
55	11	150	300	600	210	420	840	230	460	920	330	660	1320
60	12	150	300	600	250	500	1000	240	480	960	400	800	1600
65	13	160	320	640	290	580	1160	240	480	960	450	900	1800
70	14	200	400	800	300	600	1200	300	600	1200	480	960	1920
75	15	200	400	800	310	620	1240	310	620	1240	500	1000	2000
80	16	240	480	960	370	740	1480	390	780	1560	580	1160	2320
85	17	250	500	1000	370	740	1480	400	800	1600	600	1200	2400
90	18	300	600	1200	480	960	1920	460	920	1840	750	1500	3000
95	19	310	620	1240	520	1040	2080	480	960	1920	850	1700	3400
100	20	310	620	1240	590	1180	2360	500	1000	2000	950	1900	3800
105	21	360	720	1440 -	650	1300	2600	560	1120	2240	1000	2000	4000
110	22	420	840	1680	670	1340	2680	650	1300	2600	1050	2100	4200
120	24	430	860	1720	750	1500	3000	690	1380	2760	1200	2400	4800
130	26	560	1120	2240	800	1600	3200	900	1800	3600	1250	2500	5000
140	28	570	1140	2280	_	_	-	900	1800	3600	_	-	_
150	30	650	1300	2600	-	-	-	1000	2000	4000	-	-	-
160	32	730	1460	2920	_	_	_	1150	2300	4600	_	_	_
170	34	800	1600	3200	-	-	-	1250	2500	5000	-	-	_
80	36	900	1800	3600	-	-	-	1450	2900	5800	-	-	-
90	38	950	1900	3800	_	_	_	1450	2900	5800	_	_	_

Designs of single row angular contact ball bearings with clearance or initial preload are given in the figures below.

Cages

Single row angular contact ball bearings series 72B and 73B are generally fitted with pressed sheet cages.

High precision single row angular contact ball bearings series 70C, 72C, 70A and 72A are fitted with textolite cages (textile fibre reinforced phenol resins).

At special request (high speeds, large sizes), bearings series 70C, 72C, 70A and 72A are fitted with machined brass cages. Cages of glass fibre reinforced polyamide 6.6 are also used with good results if operating temperature doesn't exceed + 120°C.

Cages design and some technical data are given in table 4

Cages design and some technical data

Table 4

Cage	Design bearing	cage	Application	Max. value D _m n oil grease
Pressed sheet cage			- General applic Moderate spec Bearings series 72B, 73B	eds
Machined brass cage M,MA,MB			- General applic - High speeds - Bearings: 7231B-7238E 7310B-7338E	3
Polyamide cage TN			- General applii - Low friction moment - High speeds	eation 1100×10 ³ 900×10 ³
Textolite cage T,TA,TB			- High accuracy bearings serie 70C, 72C, 70. High speeds Low vibration	A, 72A

Equivalent dynamic radial load

For single row angular contact ball bearings series 72B and 73B, single and in tandem arrangement the following equations are used:

$$P_r = F_r$$
, kN, when $F_a/F_r \le 1,14$, $P_r = 0,35 \; F_r \; + \; 0,57 \; F_a$, kN, when $F_a/F_r > \; 1,14$

For bearings in DB or DF arrangement

$$\begin{array}{ll} P_r = F_r + 0.65 \; F_a, \, kN, & \text{when } F_a/F_r \leq 1.14 \\ P_r = 0.57 \; F_r + 0.93 \; F_a, \, kN, \, \text{when } F_a/F_r > 1.14 \end{array}$$

In case of paired bearings, Fr and Fa are the loads acting upon the bearings pair.

As the load is transmitted from one raceway to the other under a certain angle to the bearing axis, the actual load will cause an axial load. This has to be considered when calculating the equivalent dynamic load, in case of two single bearings or tandem arrangements. The equations needed for calculation are given in table 5, for various arrangements and loading versions.

These equations are available for bearings mounted without clearance and without preload (clearance equal to

For single row angular contact ball bearings series 70C and 72C with a contact angle $\alpha = 15^{\circ}$ (C), single or in DT arrangement, the following equations are available:

$$\begin{array}{ll} P_r = \, F_r, \, kN, & \text{for } F_a/F_r \leq e \\ P_r = \, 0,44F_r \, + \, YF_a, \, kN, \, \text{for } F_a/F_r > e \end{array} \label{eq:problem}$$

The values of factor Y depend on the values of the ratio f₀ i F_a/C_{0r} and are given in table 6. Factor f₀ can be found in diagram as a function of dimensions series and bearing mean diameter. "i" represents the number of

bearings or bearing pairs in a bearing joint.

For bearings in DB and DF arrangements, the following equations are available:

Determination of axial loads

Table 5

$$P_r = F_r + Y_1F_a$$
, kN, for $F_a/F_r \le e$
 $P_r = 0.72 F_r + Y_2 F_a$, kN, for $F_a/F_r > e$

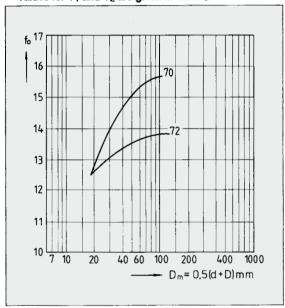
The values of factors Y_1 and Y_2 depend on the ratio f_0iF_a/C_{0r} and are given in table 6 (f_0 from diagram below).

For single row angular contact ball bearings series 70A and 72A, with a contact angle $\alpha = 25^{\circ}$, single or in DT arrangement, the following equations are available:

$$P_r = F_r$$
, kN, for $F_a/F_r \le 0.68$
 $P_r = 0.41F_r + 0.87 F_a$, kN, for $F_a/F_r > 0.68$

For bearings in DB and DF arrangement, the following equations are available:

$$P_r = F_r + Y_1 F_a$$
, kN, for $F_a/F_r \le e$
 $P_r = 0.72 F_r + Y_2 F_a$, kN, for $F_a/F_r > e$



Values of factors e, Y, Y1 and Y2

Table 6

to i Fa Cor		Single and DT	Arrangement DB or DF	
	е	Y	Y1	Y2
0,2	0,38	1,46	1,64	2,37
0,4	0,41	1,36	1,52	2,21
0,8	0.44	1,28	1,44	2,11
1,6	0,48	1,16	1,31	1,90
3 [´]	0,52	1,08	1,21	1,78
6	0,56	1	1,12	1,66

Values for Y1 and Y2 are given in table 6.

Equivalent static load

For single row angular contact ball bearings series 72B and 73B with a contact angle $\alpha = 40^{\circ}$, single and in DT arrangement, the following equation is available:

$$P_{0r} = 0.6 F_r + 0.26 F_a$$
, kN
If $P_{0r} < F_r$, then we consider $P_0 = F_r$

For bearings in DB and DT arrangement, the following equation is available:

$$P_{0r} = F_r + 0,52 F_a, kN$$

For single row angular contact ball bearings series 70C and 72C, with a contact angle $\alpha = 15^{\circ}$, single and in DT arrangement, the following equation is available:

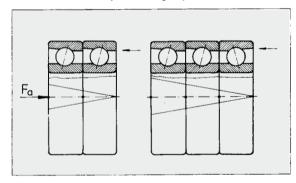
$$P_{0r} = 0.5 F_r + 0.46 F_a, kN$$

For bearings in DB and DE arrangement, the following equation is available:

$$P_{0r} = 0.5 F_r + 0.92 F_{a_r} kN$$

For single row angular contact ball bearings series 70A and 72A with a contact angle $\alpha=25^{\circ}$, single and in DT arrangement, the following equation is available:

$$P_{0r} = 0.5 F_r + 0.38 F_{a_1} kN$$


For bearings in DB and DE arrangement, the following equation is available:

$$P_{0r} = F_r + 0.76 F_a, kN$$

Two "V" scratches are marked on the outside surface where the runout is maximum, i.e. where the outer ring thickness is maximum, so that the bearings of a set can be mounted in the manufacturing order. The place of maximum runout is marked on the chamfer between the inner ring bore and side face. Thus, the possible fit ovalnesses on the shaft can be compensated.

Every set is delivered as an unit, separately packed. In each unit, bearings are singly packed.

If distance rings are necessary to be mounted between bearings, they have not to be adjusted when being mounted. There is only one condition to be observed: the inner distance ring width should be equal to that of the outer ring, the side faces being parallel to each other. This can be easily done if both distance rings are simultaneously ground on a grinding and lapping machine. If bearings are mounted with distance rings, the mounting is also done observing the "V" marked as mentioned above. The cone vertex should be on the ring side opposite to that one on which the load acts (see next figure).

Basic dynamic load of paired bearings

Basic dynamic load given in bearing tables is valid for each single bearing. Basic dynamic load of a paired bearings set can be determined according to the specifications on page 26.

Basic static load of paired bearings

Basic static load of paired bearings can be similarly determined, multiplying the values of Cor in the tables by

2, 3 and 4 respectively.

Bearing speed limit

Single row angular contact ball bearings are used at high speeds.

High precision bearings allow operation at higher speeds than those in the catalogue, depending on the oil lubrication system (oil bath, dropping lubrication, oil spot, with oil cooling).

The values of speeds for bearings series 72B and 73B, normal tolerance class, without preload are given in this catalogue.

In case of preloaded bearings, for single mounted bearing and bearings in DB, DF or DT arrangements, speeds should be multiplied by the coefficients in table 7.

For bearings series 70C, 72C, 70A and 72A, speeds are given for the tolerance class P4 and light preload.

In case of bearings with other values of preloads or arrangements of 3 or 4 bearing sets, the speeds of the bearing of basic design should be multiplied by the values

Speed limit reduction factor

Table 7

Arrangement	Bearing				
	UA,UO	L	М	S	
Single	1,0	1,0	0,90	0,80	
Tandem, DT	0,90	0.90	0,80	0,65	
Back-to-back, DB	0,80	0,80	0,70	0,55	
Face-to-face, DF	0,80	0,75	0,60	0,40	
Three bearings set	0,75	0,70	0,55	0,35	
Four bearings set	0,70	0,65	0,45	0,25	

of the coefficients in table 7.

Abutment dimensions

For a proper location of bearing rings on the shaft and housing shoulder respectively, shaft (housing) maximum connection radius $r_{u\ max}$ should be less than bearing minimum mounting chamfer $r_{1\min,r_{2\min}}$.


Shoulder height should also be properly sized in case of bearing maximum mounting chamfer.

The values of the connection radii and support shoulder height are given in table 8.

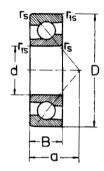
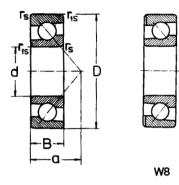
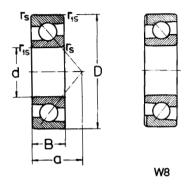

Abutment dimensions

Table 8

r ₈ , r _{1s} min.	ru , ru1 max.	h _u , h _{u1} min. Bearing series			
		718, 728 719, 729	72 73		
		70			
mm					
0,3	0,3	1	1,2		
0,6	0,6	1,6	2,1		
1	1	2,3	2,6		
1,1	1	3	3,5		
1,5	1,5	3,5	4,5		
2	2	4,4	5,5		
2,1	2,1 2,5 3	5,1	6		
3	2,5	6,2	7		
4	3	7,3	8,5		

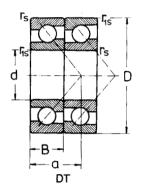


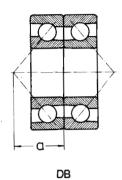
Dime	mensions						Basic radial Speed limit load			Designation Weight		
d	D	В	r _s min.	r _{1ş} min.	a	dyn. Cr	stat. C _{Or}	grease	oil			
mm						kN		min ⁻¹		-	kg	
10	30	9	0,6	0,3	13	4,95	2,5	19 000	28 000	7200B	0,031	
12	32	10	0,6	0,3	14	7,4	3,75	17 000	24 000	7201B	0,045	
15	35 35 35 42	11 11 11 13	0,6 0,6 0,6 1	0,3 0,3 0,3 0,6	16 16 16 19	7,45 7,45 7,45 12,9	3,9 3,9 3,9 6,5	16 000 16 000 16 000 14 000	22 000 22 000 22 000 19 000	7202B 7202BP6 7202BP5 7302B	0,048 0,048 0,048 0,090	
17	40 40 40 47	12 12 12 14	0,6 0,6 0,6 1	0,6 0,6 0,6 0,6	18 18 18 21	11 11 11 14,8	6,1 6,1 6,1 8,1	14 000 14 000 14 000 12 000	19 000 19 000 19 000 17 000	7203B 7203BP6 7203BP5 7303B	0,070 0,070 0,070 0,120	
20	47 47 47 52 52	14 14 14 15 15	1 1 1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	21 21 21 23 23	14,1 14,1 14,1 17,3 17,3	8,4 8,4 8,4 9,7 9,7	11 000 11 000 11 000 10 000 10 000	16 000 16 000 16 000 15 000 15 000	7204B 7204BP6 7204BP5 7304B 7304BP6	0,110 0,110 0,110 0,150 0,150	
25	52 52 52 62 62	15 15 15 17 17	1 1 1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	24 24 24 27 27	15,5 15,5 15,5 24,4 24,4	10,1 10,1 10,1 14,6 14,6	9 500 9 500 9 500 8 500 8 500	14 000 14 000 14 000 12 000 12 000	7205B 7205BP6 7205BP5 7305B 7305BP6	0,130 0,130 0,130 0,130 0,250 0,250	
	62	17	1,1	0,6	27	24,4	14,6	8 500	12 000	7305AMA	0,250	
30	62 62 62 62 72	16 16 16 16 19	1 1 1 1 1,1	0,6 0,6 0,6 0,6 0,6	27 27 27 27 27 31	20,5 20,5 20,5 20,5 29,3	13,6 13,6 13,6 13,6 19	8 500 8 500 8 500 8 500 7 500	12 000 12 000 12 000 12 000 10 000	7206B 7206BP6 7206BP5 7206ATAP2 7306B	0,210 0,210 0,210 0,210 0,210 0,370	
	72 72 72	19 19 19	1,1 1,1 1,1	0,6 0,6 0, 6	31 31 31	29,3 29,3 29,3	19 19 19	7 500 7 500 7 500	10 000 10 000 10 000	7306BP6 7306BP5 7306AMA	0,370 0,370 0,370	
35	72 72 80 80	17 17 21 21	1,1 1,1 1,5 1,5	0,6 0,6 1	31 31 35 35	28,5 28,5 36,7 36,7	19,8 19,8 24,3 24,3	7 500 7 500 7 000 7 000	10 000 10 000 9 500 9 500	7207B 7207BP5 7307B 7307BP5	0,300 0,300 0,510 0,510	
40	80 80 80 90 90	18 18 18 23 23	1,1 1,1 1,1 1,5 1,5	0,6 0,6 0,6 1	34 34 34 39 39	32,1 32,1 32,1 44,8 44,8	23 23 23 30,3 30,3	6 700 6 700 6 700 6 300 6 300	9 000 9 000 9 000 8 500 8 500	7208B 7208BP6 7208BP5 7308B 7308BP6	0,390 0,390 0,390 0,670 0,670	
	90	23	1,5	1	39	44,8	30,3	6 300	8 500	7308BP5	0,670	
45	85	19	1,1	0,6	37	36,1	26,2	6 300	8 500	7209B	0,440	

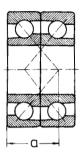


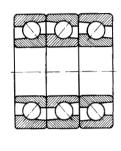
Dimer	neneions					Basic radial Speed limit load			Designation	Weight	
d	D	В	r _s min.	r _{1ş} min.	a	dyn. Cr	stat. C _{Or}	grease	oil		
mm						kN		min ⁻¹		-	kg
45	85 100	19	1,1	0,6	37	36,1 58,3	26,2 40,1	6 300 5 600	8 500	7209BP5 7309B	0,440
	100	25	1,5	1	43	58,3 58.3	40,1 40,1	5 600 5 600	7 500 7 500	7309BP6	0,900 0,900
	100 100	25 25	1,1 1,5 1,5 1,5	i	43 43	58,3 58,3	40,1	5 600	7 500	7309BP5	0,900
50	90 90	20	1,1 1,1	0,6 0,6	39	37,4 37,4	28,6	5 600 5 600 5 600 5 000	7 500 7 500	7210B	0,490 0,490 0,490
	90	20	1,1	0,6	39	37,4	28,6	5 600	7 500	7210BP6 7210BP5	0,490
	90	20	1,1	0,6	39	37,4	28,6	2 600	7 500 6 700	7210BP5 7310B	0,490 1.15
	110 110	20 20 20 27 27	2	1	39 39 39 47 47	68,2 68,2	28,6 28,6 28,6 47,9 47,9	5 000	6 700	7310BP6	1,15 1,15
	110	27	2	1	47	68,2	47,9	5 000	6 700	7310BP5	1,15
55	100	21	1,5	1	43	46,2	36.2	5 300	7 000	7211B	0,650
•	100 120	21 29	2,0	1	43 52	78,8	36,2 56,4	5 300 4 500	6 000	7311B	1,45
60	110	22	1.5	1	47 47	56,3 56,3	44,7 44,7	4 800 4 800 4 300 4 300	6 300	7212B	0,840
	110 110	22 22 31	1,5 1,5	1	47	56,3	44,7	4 800	6 300	7212BP5	0,840
	130 130	31	2,1 2,1	1,1 1,1	56 56	90	65,5	4 300	5 600	7312B	1,85 1,85
	130	31		1,1		90	65,5		5 600	7312BP5	
65	120 120	23 23	1,5	1	50	63,6 63,6	52,5 52,5	4 300	5 600	7213B 7213BP6	1,05 1,05
	120	23	1,5	1	50	63,6	52,5	4 300	5 600 5 600	7213BP6 7213BP5	1,05
	120 140	23 33	1,5 1,5 1,5 2,1	1 1,1	50 50 50 60	63,6 101	52,5 75,3	4 300 4 300 4 300 4 000	5 300	7313B	2,25
70	125	24		1		69 1			5 600	7214B	1,15
,,	125	24	1.5	i	53 53 64	69,1 69,1	57,8 57,8	4 300	5 600	7214B	1,15
	125 125 150	35	2,1	1,1	64	114	86	3 800	5 000	7314B	2,75
	150 150	24 24 35 35 35	1,5 1,5 2,1 2,1 2,1	1,1 1,1	64	114	86	4 300 4 300 3 800 3 800 3 800	5 000	7314BP6	1,15 2,75 2,75 2,75 2,75
	150				64	114	86	3 800	5 000	7314BP5	
	150	35	2,1	1,1	64	114	86	3 800	5 000	7314BTN	2,75
75	130 130	25	1,5	1	56	74,8	63,2 63,2 63,2	4 000 4 000	5 300	7215B	1,30 1,30
	130	25	1,5	1	56	74,8	63,2	4 000	5 300	7215BP6	1,30
	130 160	25	1,5	1.	56	/4,8 125	63,2	4 000	5 300 4 500	7215BP5 7315B	1,30 3,30
	160	25 25 25 37 37	1,5 1,5 1,5 2,1 2,1	1,1 1,1	56 56 56 68 68	74,8 125 125	97,5 97,3	3 400 3 400	4 500	7315BMAP6	3,30
	160	37	2,1	1,1	68	125	97,5	3 400	4 500	7315AMA	3,30
80	140	26	2	1	59	80,5	69,3	3 800 3 200 3 200 3 200	5 000	7216B 7316B	1,55
-	140 170	26 39 39	2,1	1,1	72	135	109	3 200	4 300 4 300	7316B	3,90
	170	39	2 2,1 2,1 2,1	1,1	59 72 72 72 72	135	109	3 200	4 300	7316BP6	3,90
	170	39		1,1		135	109		4 300	7316BMAP6	3,90
85	150 180	28	2 3	1.	64 76	93,1 145	81,1 122	3 400 3 000	4 500	7217B	1,95 4,60
	180	·· 41	3	1,1	76	145	122	3 000	4 000	7317B	
85	180	41	3	1,1 1,1	76	145 145	122 122	3 000 3 000	4 000	7317 BP 6 7317 BMP 6	4,60
	180	41	3	1,1	76	145	122	3 000	4 000	/31/BMP6	4,60

Dime	enoien					Basic load	radial	Speed	imit	Designation	Weight
d	D	В	r _s min.	r _{1s} min.	а	dyn. C _r	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
90	160 160 190	30 30 43	2 2 3	1,1	67 67 80	107 107 156	93,8 93,8 135	3 200 3 200 2 800	4 300 4 300 3 800	7218B 7218BMB 7318B	2,40 2,40 5,40
95	170 200	32 45	2,1 3	1,1 1,1	71 84	116 1 6 8	101 150	3 000 2 600	4 000 3 600	7219B 7319B	2,90 6,25
100	180 180 180 180 180	34 34 34 34 34	2,1 2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1 1,1	76 76 76 76 76	129 129 129 129 129	116 116 116 116 116	2 800 2 800 2 800 2 800 2 800	3 800 3 800 3 800 3 800 3 800	7220B 7220BP6 7220BMA 7220BMAP6 7220BMAP4	3,45 3,45 3,45 3,45 3,45
	180 215 215 215	34 47 47 47	2,1 3 3 3	1,1 1,1 1,1 1,1	76 90 90 90	129 190 190 190	116 178 178 178	2 800 2 400 2 400 2 400	3 800 3 400 3 400 3 400	7220BMB 7320B 7320BP6 7320BM	3,45 7,75 7,75 7,75
110	200 200 240 240 240	38 38 50 50 50	2,1 2,1 3 3 3	1,1 1,1 1,1 1,1 1,1	84 84 99 99	153 153 248 248 248	145 145 229 229 229	2 400 2 400 2 000 2 000 2 000	3 400 3 400 3 000 3 000 3 000	7222B 7222BMB 7322B 7322BP5 7322BM	4,80 4,80 10,5 10,5 10,5
140	250 300 300	42 62 62	3 4 4	1,1 1,5 1,5	103 123 123	191 290 290	210 334 334	1 700 1 700 1 700	2 400 2 400 2 400	7228B 7328B 7328BMBP5	8,80 21,6 21,6
150	190 270 320 320	24 45 65 65	1,1 3 4 4	0,6 1,1 1,5 1,5	35 111 131 131	60,5 195 317 317	79,2 222 380 380	2 200 2 000 1 600 1 600	3 000 2800 2 000 2 000	72830CMA 7230BM 7330BM 7330BMP5	3,36 11,6 26,5 26,5
160	220	28	2	1	58	110	134	2 200	3 000	71932AMAP5	3,26
180	250	33	2	2	33	131	162	2 000	2 800	71 936AM	5,36
200	250 310 420	30 51 80	1,5 2,1 5	0,6 1,5 2	45 118 170	102 224 387	141 296 538	3 000 1 800 1 600	5 600 2 600 2 000	72840CMAP4 7040A2MAP6 7340BMAW8	3,43 14,5 62,2
220	300	38	2,1	1,1	128	160	210	2 000	2 800	71944BFS1F2	7,25
240	320 360	38 56	2,1 3	1,1 3	154 137	159 255	217 355	2 000 1 600	2 800 2 200	71948BMP6 7048BMAP5	8,10 20,0
260	360 400	46 65	3,5 4	3,5 4	171 118	215 316	308 475	1 600 1 300	2 000 1 800	71952BMP6 7052BA1MAP6W8	13,8 29,7
280	380	46	2,1	2,1	180	221	327	1 300	1 800	71956BMP6	14,8
320	400	48	2,1	2,1	72	233	350	1 200	1 600	72864CMBP5	12,1

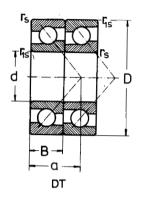


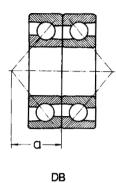


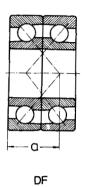

Dimen	mensions			Basic	Basic radial Speed limit load			Designation	Weight		
d	D	В	r _s min.	Γ1ş min.	а	dyn. C _r	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
360	480	56	3	3	149	308	511	1 000	1 400	71972A1MBP5	25,0
460	680	100	6	6	215	701	1 440	700	1 000	7092A1M	119
560	750	85	5	4	130	753	1 738	630	900	719/560CMAP6	106,7
600	730 800	60 90	3 5	3 2	222 138,8	511 750	1 140 1 797	630 600	900 850	718/600A1MB 719/600CMAP6	52,2 128
670	820 820	69 69	4 4	4 4	134 134	620 620	1 466 1 466	560 560	800 800	718/670CMAP6 718/670CMBP6	77,9 77,3
800	980	82	5	5	298	590	1 473	480	67 0	718/800A1FBP5	152
850	1 120	118	6	6	343,3	880	2 423	430	600	719/850A1FBP5	363
1 060	1 280	100	6	6	322,8	906	2 805	360	500	718/1060AFB	338

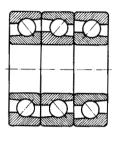


Angular contact ball bearings (Matched Pair)

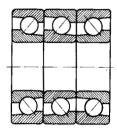


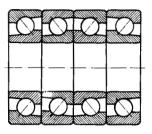

DE	TFT
DF	171


Dimen	imensions					Basic I	radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1s} min.	а	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		_	kg
15	35 35 35 35	11 11 11 11	0,6 0,6 0,6 0,6	0,3 0,3 0,3 0,3	16 16 16 16	12 12 12 12	7,8 7,8 7,8 7,8	14 000 13 000 14 000 13 000	20 000 18 000 20 000 18 000	7202BDT 7202BDB 7202BP6DT 7202BP5DB	0,096 0,096 0,096 0,096
17	40 40 40 40 40	12 12 12 12 12	0,6 0,6 0,6 0,6 0,6	0,6 0,6 0,6 0,6 0,6	18 18 18 18 18	17,8 17,8 17,8 17,8 17,8	12,2 12,2 12,2 12,2 12,2	13 000 11 000 11 000 11 000 11 000	17 000 15 000 15 000 15 000 15 000	7203BDT 7203BDB 7203BDF 7203BP6DB 7203BP5DB	0,140 0,140 0,140 0,140 0,140
	47	14	1	0,6	21	24	16,2	11 000	15 000	7303BDT	0,240
20	47 47 47 47 47	14 14 14 14 14	1 1 1 1	0,6 0,6 0,6 0,6 0,6	21 21 21 21 21	22,8 22,8 22,8 22,8 22,8 22,8	16,8 16,8 16,8 16,8 16,8	10 000 10 000 9 000 9 000 9 000	14 000 14 000 13 000 13 000 13 000	7204BDT 7204BDB 7204BDF 7204BP6DB 7204BP5DB	0,220 0,220 0,220 0,220 0,220
	52 52 52	15 15 15	1,1 1,1 1,1	0,6 0,6 0,6	23 23 23	28 28 28	19,4 19,4 19,4	9 000 8 000 8 000	14 000 12 000 12 000	7304BDT 7304BDB 7304BDF	0,300 0,300 0,300
25	52 52 52 52 52	15 15 15 15 15	1 1 1 1	0,6 0,6 0,6 0,6 0,6	24 24 24 24 24 24	25,1 25,1 25,1 25,1 25,1	20,2 20,2 20,2 20,2 20,2	9 000 7 500 7 500 7 500 9 000	13 000 11 000 11 000 11 000 13 000	7205BDT 7205BDB 7205BDF 7205BP6DB 7205BP5DT	0,260 0,260 0,260 0,260 0,260
	52 52 62 62 62	15 15 17 17 17	1 1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	24 24 27 27 27	25, 1 33,5 39,5 39,5 39,5	20,2 30,3 29,2 29,2 29,2	7 500 7 000 7 500 6 700 6 700	11 000 10 000 11 000 9 500 9 500	7205BP5DB 7205BP5TFT 7305BDT 7305BDB 7305BDF	0,260 0,390 0,500 0,500 0,500
	62	17	1,1	0,6	27	39,5	29,2	6 700	9 500	7305AMADF	0,500
30	62 62 62 62 62	16 16 16 16 16	1 1 1 1	0,6 0,6 0,6 0,6 0,6	27 27 27 27 27 27	33,2 33,2 33,2 33,2 33,2	27,2 27,2 27,2 27,2 27,2	7 500 6 700 6 700 6 700 6 700	11 000 9 500 9 500 9 500 9 500	7206BDT 7206BDB 7206BDF 7206BP6DB 7206BP5DB	0,420 0,420 0,420 0,420 0,420
	62 62 62 72 72	16 16 16 19 19	1 1 1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	27 27 27 31 31	33,2 44,3 33,2 47,5 47,5	27,2 40,8 27,2 38 38	6 700 6 000 7 500 6 700 6 000	9 500 8 500 11 000 9 000 8 000	7206BP5DF 7206BP5TFT 7206ATAP2DT 7306BDT 7306BDB	0,420 0,630 0,420 0,740 0,740
	72 72 72	19 19 19	1,1 1,1 1,1	0,6 0,6 0,6	31 31 31	47,5 63,3 77,4	38 57 76	6 000 5 300 5 300	8 000 7 000 7 000	7306BDF 7306BTFT 7306BQFC	0,740 1,11 1,48



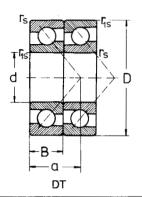
Angular contact ball bearings (Matched Pair)

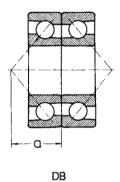


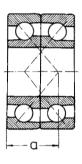

TFT

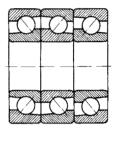
Dime	nsions					Basic (radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	а	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
30	72 72 72	19 19 19	1,1 1,1 1,1	0,6 0,6 0,6	31 31 31	47,5 47,5 47,5	38 38 38	6 700 6 700 6 000	9 000 9 000 8 000	7306BP5DT 7306AMADT 7306AMADF	0,740 0,740 0,740
35	72 72 72 72 72 72	17 17 17 17 17	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	31 31 31 31 31	46,2 46,2 46,2 46,2 46,2	39,6 39,6 39,6 39,6 39,6	6 700 6 000 6 000 6 700 6 000	9 000 8 000 8 000 9 000 8 000	7207BDT 7207BDB 7207BDF 7207BP5DT 7207BP5DB	0,600 0,600 0,600 0,600 0,600
	72 72 80 80 80	17 17 21 21 21	1,1 1,1 1,5 1,5 1,5	0,6 0,6 1 1	31 31 35 35 35	61,6 75,2 59,5 59,5 59,5	59,4 79,2 48,6 48,6 48,6	5 300 5 300 6 300 5 600 5 600	7 000 7 000 8 500 7 500 7 500	7207BP5TBT 7207BP5QFC 7307BDT 7307BDB 7307BDF	0,900 1,20 1,02 1,02 1,02
	80	21	1,5	1	35	59,5	48,6	5 600	7 500	7307BP6DB	1,02
40	80 80 80 80 80	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	34 34 34 34 34	52 52 52 52 52	46 46 46 46 46	6 000 6 030 5 300 6 000 5 300	8 000 8 100 7 000 8 000 7 000	7208BDT 7208BDB 7208BDF 7208BP5DT 7208BP5DB	0,780 0,780 0,780 0,780 0,780
	90 90 90 90 90	23 23 23 23 23	1,5 1,5 1,5 1,5 1,5	1 1 1 1	39 39 39 39 39	72,6 72,6 72,6 96,8 118	60,6 60,6 60,6 91,8 121	5 600 5 000 5 000 4 500 4 500	7 500 6 700 6 700 6 000 6 000	7308BDT 7308BDB 7308BDF 7308BTFT 7308BQFC	1,34 1,34 1,34 0,670 2,68
	90 90 90 90	23 23 23 23	1,5 1,5 1,5 1,5	1 1 1	39 39 39 39	72,6 72,6 96,8 118	60,6 60,6 91,8 121	5 000 5 000 4 500 4 500	6 700 6 700 6 000 6 000	7308BP6DF 7308BP5DB 7308BP5TFT 7308BP5QFC	1,34 1,34 2,01 2,68
45	85 85 85 85 100	19 19 19 19 25	1,1 1,1 1,1 1,1 1,5	0,6 0,6 0,6 0,6 1	37 37 37 37 43	58,5 58,5 58,5 58,5 94,4	52,4 52,4 52,4 52,4 80,2	5 600 5 000 5 000 5 000 5 000	7 500 6 700 6 700 6 700 6700	7209BDT 7209BDB 7209BDF 7209BP5DB 7309BDT	0,880 0,880 0,880 0,880 1,80
	100 100 100 100	25 25 25 25	1,5 1,5 1,5 1,5	1 1 1	43 43 43 43	94,4 94,4 94,4 94,4	80,2 80,2 80,2 80,2	4 500 4 480 4 500 4 500	6 000 6 000 6 000 6 000	7309BDB 7309BDF 7309BP6DB 7309BP6DF	1,80 1,80 1,80 1,80
50	90 90 90 90 110	20 20 20 20 27	1,1 1,1 1,1 1,1 2	0,6 0,6 0,6 0,6 1	39 39 39 39 47	60,6 60,6 60,6 111	57,2 57,2 57,2 57,2 95,8	5 000 4 500 5 000 4 500 4 500	6 700 6 000 6 700 6 000 6 000	7210BDT 7210BDF 7210BP5DT 7210BP5DB 7310BDT	0,980 0,980 0,980 0,980 2,30

Angular contact ball bearings (Matched Pair)

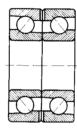

TBT

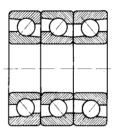

QFC

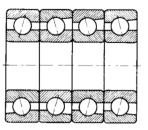

Dime	nsions					Basic I	radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	а	dyn. Cr	stat. Cor	grease	oil		
mm		-				kN		min ⁻¹		-	kg
50	110 110 110 110	27 27 27 27 27	2 2 2 2	1 1 1	47 47 47 47	111 111 205 273	95,8 95,8 144 192	4 000 4 000 3 600 3 600	5 300 5 300 4 800 4 800	7310BDB 7310BDF 7310BP5TFT 7310BP5QFC	2,30 2,30 3,45 4,60
55	100 100 100 120 120	21 21 21 29 29	1,5 1,5 1,5 2 2	1 1 1 1	43 43 43 51 51	74,8 74,8 74,8 128 128	72,4 72,4 72,4 113 113	4 800 4 300 4 300 4 000 3 600	6 300 5 600 5 600 5 300 4 800	7211BDT 7211BDB 7211BDF 7311BDT 7311BDB	1,30 1,30 1,30 2,90 2,90
	120	29	2	1	52	128	113.	3 600	4 800	7311BDF	2,90
60	110 110 110 110 110	22 22 22 22 22 31	1,5 1,5 1,5 1,5 2,1	1 1 1 1 1,1	47 47 47 47 55	91,2 91,2 91,2 91,2 146	89,4 89,4 89,4 89,4 131	4 300 3 800 3 800 3 800 3800	5 600 5 000 5 000 5 000 5 000	7212BDT 7212BDB 7212BDF 7212BP5DB 7312BDT	1,68 1,68 1,68 1,68 3,70
	130 130 130	31 31 31	2,1 2,1 2,1	1,1 1,1 1,1	55 55 55	146 146 146	131 131 131	3 400 3 400 3 400	4 500 4 500 4 500	7312BDB 7312BDF 7312BP5DB	3,70 3,70 3,70
65	120 120 120 120 120	23 23 23 23 23	1,5 1,5 1,5 1,5 1,5	1 1,1 1,1 1	50 50 50 50 50	103 103 103 103 103	105 105 105 105 105	3 800 3 800 3 800 3 400 3 400	5 000 5 000 5 000 4 500 4 500	7213BDT 7213BDB 7213BDF 7213BP6DB 7213BP6DF	2,10 2,10 2,10 2,10 2,10 2,10
	140 140 140	33 33 33	2,1 2,1 2,1	1,1 1,1 1,1	60 60	164 164 164	151 151 151	3 600 3 200 3 200	4 800 4 300 4 300	7313BDT 7313BDB 7313BDF	4,50 4,50 4,50
70	125 125 125 150 150	24 24 24 35 35	1,5 1,5 1,5 2,1 2,1	1 1 1 1,1 1,1	53 53 53 64 64	112 112 112 185 185	116 116 116 172 172	3 800 3 400 3 400 3 400 3 000	5 000 4 500 4 500 4 500 4 000	7214BDT 7214BDB 7214BDF 7314BDT 7314BDB	2,30 2,30 2,30 5,50 5,50
	150 150 150 150	35 35 35 35	2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1	64 64 64 64	185 185 185 185	172 172 172 172	3 000 3 400 3 400 3 000	4 000 4 500 4 500 4 000	7314BDF 7314BP6DT 7314BP5DT 7314BP5DB	5,50 5,50 5,50 5,50
75	130 130 130 130 130	25 25 25 25 25 25	1,5 1,5 1,5 1,5 1,5	1 1 1 1	56 56 56 56 56	121 121 121 121 121	126 126 126 126 126	3 600 3 200 3 200 3 200 3 200	4 300 4 300 4 300 4 300 4 300	7215BDT 7215BDB 7215BDF 7215BP6DB 7215BMAP6DB	2,60 2,60 2,60 2,60 2,60
	160 160	37 37	2,1 2,1	1,1 1,1	68 68	203 203	195 195	3 200 2 800	4 000 3 600	7315BDT 7315BDB	6,60 6.60


Angular contact ball bearings (Matched Pair)

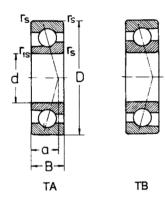
DF




TFT


Dimen	sions					Basic I	adial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1s} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
75	160 160	37 37	2,1 2,1	1,1 1,1	68 68	203 203	195 195	2 800 2 800	3 600 3 600	7315BDF 7315AMADF	6,60 6,60
80	110 140 140 140 170	16 26 26 26 39	1 2 2 2 2,1	1 1 1 1 1,1	21 59 59 59 72	55,1 130 130 130 219	69,2 139 139 139 218	4 000 3 200 2 800 2 800 2 800	5 300 4 300 3 800 3 800 3 800	71916CTAP4DT 7216BDT 7216BDB 7216BDF 7316BDT	0,736 3,10 3,10 3,10 7,80
	170 170 170 170 170	39 39 39 39 39	2,1 2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1 1,1	72 72 72 72 72 72	219 219 292 219 292	218 218 327 218 327	2 600 2 600 2 200 2 800 2 200	3 400 3 400 3 000 3 800 3 000	7316BDB 7316BDF 7316BTBT 7316BP6DT 7316BMAP6TBT	7,80 7,80 11,7 7,80 11,7
85	150 150 150 180 180	28 28 28 41 41	2 2 2 3 3	1 1 1 1,1 1,1	64 64 64 76 76	151 151 151 235 235	162 162 162 244 244	3 000 2 800 2 800 2 800 2 400	4 000 3 600 3 600 3 600 3 200	7217BDT 7217BDB 7217BDF 7317BDT 7317BDB	3,90 3,90 3,90 9,20 9,20
	180	41	3	1,1	76	235	244	2 400	3 200	7317BDF	9,20
90	160 160 160 190 190	30 30 30 43 43	2 2 2 3 3	1 1 1 1,1 1,1	67 67 67 80 80	173 173 173 253 253	188 188 188 270 270	2 800 2 600 2 600 2 600 2 200	3 800 3 400 3 400 3 400 3 000	7218BDT 7218BDB 7218BDF 7318BDT 7318BDB	4,80 4,80 4,80 10,8 10,8
	190 190	43 43	3 3	1,1 1,1	80 80	253 337	270 405	2 200 2 000	3 000 2 600	7318BDF 7318BTBT	10,8 16,2
95	170 170 170 200 200	32 32 32 45 45	2,1 2,1 2,1 3 3	1,1 1,1 1,1 1,1 1,1	72 72 72 84 84	188 188 188 272 272	202 202 202 300 300	2 800 2 400 2 400 2 400 2 000	3 600 3 200 3 200 3 200 2 800	7219BDT 7219BDB 7219BDF 7319BDT 7319BDB	5,80 5,80 5,80 12,5 12,5
	200	45	3	1,1	84	272	300	2 000	2 800	7319BDF	12,5
100	180 180 180 180 180	34 34 34 34 34	2,1 2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1 1,1	76 76 76 76 76	208 208 208 208 208	232 232 232 232 232 232	2 600 2 200 2 200 2 200 2 200	3 400 3 000 3 000 3 000 3 000	7220BDT 7220BDB 7220BDF 7220BMADB 7220BMAP6DB	6,90 6,90 6,90 6,90 6,90
	180 215 215 215 215 215	34 47 47 47 47	2,1 3 3 3 3	1,1 1,1 1,1 1,1 1,1	76 90 90 90 90	208 308 308 308 308	232 356 356 356 356	2 600 2 200 1 900 1 900 2 200	2 800 3 000 2 800 2 800 3 000	7220BMAP4DT 7320BDT 7320BDB 7320BDF 7320BP6DT	6,90 15,5 15,5 15,5 15,5

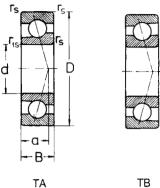
Angular contact ball bearings (Matched Pair)


DB W8

TBT

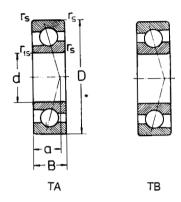
QBT

Dime	enoia					Basic r load	adial	Speed	limit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	а	dyn. C _r	stat. C _{Or}	grease	oil		
mm						kN		min ⁻¹		-	kg
100	215	47	3	1,1	90	308	356	2 200	3 000	7320BMDT	15,5
110	200 200 240 240 240	38 38 50 50 50	2,1 2,1 3 3 3	1,1 1,1 1,1 1,1 1,1	84 84 99 99	248 248 365 365 536	290 290 458 458 687	2 200 1 900 1 800 1 600 1 400	3 000 2 800 2 800 2 400 2 200	7222BDT 7222BDB 7322BDT 7322BDB 7322BTBT	9,60 9,60 21,0 21,0 31,5
	240 240	50 50	3 3	1,1 1,1	99 99	365 365	458 458	1 800 1 600	2 800 2 400	7322BP5DT 7322BMDF	21,0 21,0
140	250 300 300 300	42 62 62 62	3 4 4 4	1,1 1,5 1,5 1,5	103 123 123 123	172 470 470 470	189 668 668 668	1 400 1 400 1 200 1 400	1 900 2 200 1 900 2 200	7228BDT 7328BDT 7328BDB 7328BM8P5DT	17,6 43,2 43,2 43,2
150	270 270 320 320	45 45 65 65	3 3 4 4	1,1 1,1 1,5 1,5	111 111 131 131	156 156 254 254	444 444 760 760	2 400 2 400 1 400 1 400	3 800 3 800 1 800 1 800	7230BDB 7230BMDB 7330BMDF 7330BMP5DT	23,2 23,2 53,0 53,0
160	220	28	2	1	58	176	268	1 600	2 400	71932AMAP5DB	6,52
180	250	33	2	2	33	210	324	1 500	2 200	71936AMDB	10,8
200	250	30	1,5	0,6	45	165	282	1 400	2 000	72840CMAP4DB	6,86
200	250 310 420	30 51 80	1,5 1,1 5	0,6 1,5 2	45 118 170	220 361 1 023	423 592 1 076	1 300 1 300 1 200	1 800 1 800 2 000	72840CMAP4TBT 7040A2MAP6DB 7340BMAQBT	10,2 29,0 249
220	300	38	2,1	1,1	128	260	420	1 600	2 200	71944BFS1F2DB	14,5
240	360 360	56 56	3 3	1,5 3	137 137	410 410	700 700	1 300 1 300	1 800 1 800	7048BMAP6W8DB 7048BMAP5DF	40,0 40,0
260	360 400	46 65	3,5 4	3,5 1,5	171 118	344 514	616 946	1 100 2 000	1 600 3 200	71952BMP6DB 7052A2MAP6W8DB	27,96 59,5
280	380	46	2,1	2,1	180	358	654	880	1 200	71956BMP6DB	29,7
320	400	48	2,1	2,1	72	377	701	880	1 280	72864CMBP5DB	24,0
460	680	100	6	6	215	1 135	2 880	560	800	7092A1MDB	238
560	750	85	5	4	130	1 216	3 476	500	750	719/560CMAP6DB	213
6 0 0	730 800	60 90	3 5	3 2	222 139	825 1 216	2 280 3 594	500 560	750 680	718/600A1MBDB 719/600CMAP6DB	104 257
670	820	69	4	4	134	1 000	2 932	560	670	718/670CMAP6DB	155



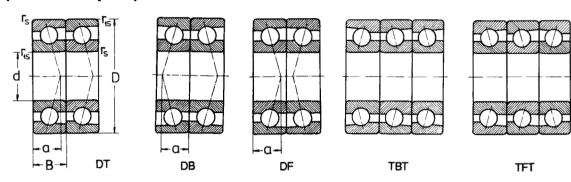
Dimer	nsions					Basic I	adial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1\$} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		_	kg
10	26 26 30 30	8 8 9 9	0,3 0,3 0,6 0,6	0,1 0,1 0,3 0,3	6 6 7 7	5,3 5,3 5,8 9,4	2,45 2,45 2,95 2,95	,56 000 56 000 50 000 50 000	90 000 90 000 80 000 80 000	7000CTAP4 7000CTAP2 7200CTAP4 7200CTAP2	0,020 0,020 0,029 0,029
12	28 28 32 32	8 8 10 10	0,3 0,3 0,6 0,6	0,1 0,1 0,3 0,3	7 7 10 10	5,4 5,4 7,5 7,5	2,6 2,6 3,4 3,4	50 000 50 000 45 000 45 000	80 000 80 000 70 000 70 000	7001CTAP4 7001CTAP2 7201ATAP4 7201ATAP2	0,023 0,023 0,030 0,030
15	32 32 35 35 35	9 9 11 11	0,3 0,3 0,6 0,6 0,6	0,1 0,1 0,3 0,3 0,3	8 8 9 9	6,3 6,3 8,9 8,9 8,7	3,4 3,4 4,5 4,5 4,4	43 000 43 000 40 000 40 000 36 000	67 000 67 000 63 000 63 000 56 000	7002CTAP4 7002CTAP2 7202CTAP4 7202CTAP2 7202ATAP4	0,030 0,030 0,042 0,042 0,042
	35	11	0,6	0,3	12	8,7	4,4	36 000	56 000	7202ATAP2	0,042
17	35 35 40 40 40	10 10 12 12 12	0,3 0,3 0,6 0,6 0,6	0,1 0,1 0,3 0,3 0,3	9 9 10 10 13	7,2 7,2 10,9 10,9 9	4,2 4,2 5,8 5,8 5,1	38 000 38 000 36 000 36 000 30 000	60 000 60 000 56 000 56 000 48 000	7003CTAP4 7003CTAP2 7203CTAP4 7203CTAP2 7203ATAP4	0,039 0,039 0,060 0,060 0,060
	40	12	0,6	0,3	13	9	5,1	30 000	48 000	7203ATAP2	0,060
20	42 42 42 42 42	12 12 12 12 12	0,6 0,6 0,6 0,6 0,6	0;3 0,3 0,3 0,3 0,3	10 10 10 10 13	10,5 10,5 10,5 10,5 10,5	6,1 6,1 6,1 6,1 5,8	32 000 32 000 32 000 32 000 28 000	50 000 50 000 50 000 50 000 45 000	7004CTAP4 7004CTAP2 7004CTBP4 7004CTBP2 7004ATAP4	0,070 0,070 0,070 0,070 0,070
	42 47 47 47 47	12 14 14 14 14	0,6 1 1 1 1	0,3 0,6 0,6 0,6 0,6	13 12 12 12 12	10 15,6 15,6 15,6 15,6	5,8 9 9 9	28 000 30 000 30 000 30 000 30 000	45 000 48 000 48 000 48 000 48 000	7004ATAP2 7204CTAP4 7204CTAP2 7204CTBP4 7204CTBP2	0,070 0,100 0,100 0,100 0,100 0,100
	47 47	14 14	1	0,6 0,6	15 15	14,9 14,9	8,6 8,6	26 000 26 000	43 000 43 000	7204ATAP4 7204ATAP2	0,100 0,100
25	47 47 47 47 47	12 12 12 12 12	0,6 0,6 0,6 0,6 0,6	0,3 0,3 0,3 0,3 0,3	11 11 11 11 15	11,7 11,7 11,7 11,7 10,4	7,4 7,4 7,4 7,4 6,95	28 000 28 000 28 000 28 000 24 000	45 000 45 000 45 000 45 000 40 000	7005CTAP4 7005CTAP2 7005CTBP4 7005CTBP2 7005ATAP4	0,080 0,080 0,080 0,080 0,080
(47 52 52 52 52	12 15 15 15 15	0,6 1 1 1 1	0,3 0,6 0,6 0,6 0,6	15 13 13 13 13	10,4 16,6 16,6 16,6 16,6	6,95 10,3 10,3 10,3 10,3	24 000 26 000 26 000 26 000 26 000	40 000 43 000 43 000 43 000 43 000	7005ATAP2 7205CTAP4 7205CTAP2 7205CTBP4 7205CTBP2	0,080 0,120 0,120 0,120 0,120 0,120

Dime	nsions					Basic I	adial	Speed I		Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		_	kg
25	52 52	15 15	1	0,6 0,6	17 17	13,7 13,7	8,8 8,8	22 000 22 000	38 000 38 000	7205ATAP4 7205ATAP2	0,120 0,120
30	55 55 55 55 55	13 13 13 13 13	1 1 1 1	0,3 0,3 0,3 0,3 0,3	12 12 12 12 17	15,1 15,1 15,1 15,1 13,4	10,3 10,3 10,3 10,3 9,5	24 000 24 000 24 000 24 000 20 000	40 000 40 000 40 000 40 000 36 000	7006CTAP4 7006CTAP2 7006CTBP4 7006CTBP2 7006ATAP4	0,120 0,120 0,120 0,120 0,120
	55 62 62 62 62	13 16 16 16 16	1 1 1 1	0,3 0,6 0,6 0,6 0,6	17 14 14 14 14	13,4 23 23 23 23 23	9,5 14,8 14,8 14,8 14,8	20 000 22 000 22 000 22 000 22 000	36 000 38 000 38 000 38 000 38 000	7006ATAP2 7206CTAP4 7206CTAP2 7206CTBP4 7206CTBP2	0,120 0,190 0,190 0,190 0,190
	62 62	16 16	1	0,6 0,6	19 19	22 22	14,1 14,1	19 000 19 000	34 000 34 000	7206ATAP4 7206ATAP2	0,190 0,190
35	62 62 62 62 62	14 14 14 14 14	1 1 1 1	0,3 0,3 0,3 0,3 0,3	14 14 14 14 19	19,2 19,2 19,2 19,2 18,2	13,7 13,7 13,7 13,7 13,1	20 000 20 000 20 000 20 000 18 000	36 000 36 000 36 000 36 000 32 000	7007CTAP4 7007CTAP2 7007CTBP4 7007CTBP2 7007ATAP4	0,160 0,160 0,160 0,160 0,160
	62 62 72 72 72	14 14 17 17 17	1 1 1,1 1,1 1,1	0,3 0,3 0,6 0,6 0,6	19 19 16 16	18,2 18,2 30,4 30,4 30,4	13,1 13,1 20,2 20,2 20,2	18 000 18 000 19 000 19 000 19 000	32 000 32 000 34 000 34 000 34 000	7007ATAP2 7007ATBP4 7207CTAP4 7207CTAP2 7207CTBP4	0,160 0,160 0,270 0,270 0,270
	72 72 72	17 17 17	1,1 1,1 1,1	0,6 0,6 0,6	16 21 21	30,4 24,5 24,5	20,2 17 17	19 000 16 000 16 000	34 000 28 000 28 000	7207CTBP2 7207ATAP4 7207ATAP2	0,270 0,270 6,270
40	68 68 68 68 68	15 15 15 15 15	1 1 1 1	0,3 0,3 0,3 0,3 0,3	15 15 20 20 20	20,6 20,6 19,5 19,5 19,5	15,9 15,9 15 15 15	19 000 19 000 16 000 16 000 16 000	34 000 34 000 28 000 28 000 28 000	7008CTAP4 7008CTAP2 7008ATAP4 7008ATAP2 7008ATBP4	0,190 0,190 0,190 0,190 0,190
	80 80 80 80 80	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	17 17 17 17 23	36,3 36,3 36,3 36,3 35,2	25,2 25,2 25,2 25,2 24,4	17 000 17 000 17 000 17 000 15 000	30 000 30 000 30 000 30 000 26 000	7208CTAP4 7208CTAP2 7208CTBP4 7208CTBP2 7208ATAP4	0,350 0,350 0,350 0,350 0,350
	80 80	18 18	1,1 1,1	0,6 0,6	23 23	35,2 35,2	24,4 24,4	15 000 15 000	26 000 26 000	7208ATAP2 7208ATBP4	0,350 0,350
45	75 75 75	16 16 16	1 1 1	0,3 0,3 0,3	16 16 22	24,4 24,4 22	19,3 19,3 17,3	16 000 15 000 15 000	28 000 28 000 26 000	7009CTAP4 7009CTAP2 7009ATAP4	0,250 0,250 0,250

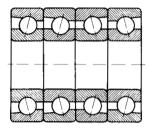

TA	T

Dimer	nsions					Basic (load	radial	Speed li	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	а	dyn. Cr	stat. C _{Or}	grease	oil		
mm						kN		min ⁻¹		_	kg
45	75 85 85 85 85	16 19 19 19	1 1,1 1,1 1,1 1,1	0,3 0,6 0,6 0,6 0,6	22 18 18 25 25	22 40 40 36,8 36,8	17,3 29 29 27,5 27,5	15 000 15 000 15 000 13 000 13 000	26 000 26 000 26 000 22 000 22 000	7009ATAP2 7209CTAP4 7209CTAP2 7209ATAP4 7209ATAP2	0,250 0,400 0,400 0,400 0,400
	85 85	19 19	1,1 1,1	0,6 0,6	25 25	36,8 36,8	27,5 27,5	13 000 13 000	22 000 22 000	7209ATBP4 7209ATBP2	0,400 0,400
50	80 80 80 80 90	16 16 16 16 20	1 1 1 1 1,1	0,3 0,3 0,3 0,3 0,6	17 17 23 23 20	25,1 25,1 23,2 23,2 42,8	20,7 20,7 20 20 20 31,7	15 000 15 000 13 000 13 000 14 000	26 000 26 000 22 000 22 000 24 000	7010CTAP4 7010CTAP2 7010ATAP4 7010ATAP2 7210CTAP4	0,260 0,260 0,260 0,260 0,450
	90 90 90 90 90	20 20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	20 27 27 27 27 27	42,8 42 42 42 42 42	31,7 31 31 31 31	14 000 12 000 12 000 12 000 12 000	24 000 20 000 20 000 20 000 20 000	7210CTAP2 7210ATAP4 7210ATAP2 7210ATBP4 7210ATBP2	0,450 0,450 0,450 0,450 0,450
55	90 90 90 90 90	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	19 19 19 26 26	34,1 34,1 34,1 32,3 32,3	28,6 28,6 28,6 27,1 27,1	13 000 13 000 13 000 12 000 12 000	22 000 22 000 22 000 20 000 20 000	7011CTAP4 7011CTAP2 7011CTBP4 7011ATAP4 7011ATAP2	0,390 0,390 0,390 0,390 0,390
	100 100 100 100 100	21 21 21 21 21	1,5 1,5 1,5 1,5 1,5	1 1 1 1	21 21 29 29 29	53 53 50,6 50,6 50,6	40 40 38,3 38,3 38,3	12 000 12 000 11 000 11 000 11 000	20 000 20 000 19 000 19 000 19 000	7211CTAP4 7211CTAP2 7211ATAP4 7211ATAP2 7211ATBP4	0,600 0,600 0,600 0,600 0,600
	100	21	1,5	1	29	50,6	38,3	11 000	19 000	7211ATBP2	0,600
60	95 95 95 95 95	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	20 20 20 27 27	35 35 35 33,2 33,2	30,5 30,5 30,5 29,1 29,1	12 000 12 000 12 000 11 000 11 000	20 000 20 000 20 000 19 000 19 000	7012CTAP4 7012CTAP2 7012CTBP2 7012ATAP4 7012ATAP2	0,420 0,420 0,420 0,420 0,420
	110 110 110 110 110	22 22 22 22 22 22	1,5 1,5 1,5 1,5 1,5	1 1 1 1	23 23 31 31 31	64,2 64 61 61 61	49 49 47,5 47,5 47,5	11 000 11 000 9 500 9 500 9 500	19 000 19 000 17 000 17 000 17 000	7212CTAP4 7212CTAP2 7212ATAP4 7212ATAP2 7212ATBP4	0,770 0,770 0,770 0,770 0,770 0,770
	110	22	1,5	1	31	61	47,5	9 500	17 000	7212ATBP2	0,770
65	100 100 100	18 18 18	1,1 1,1 1,1	0,6 0,6 0,6	20 20 28	36 36 34	32,5 32,5 31	12 000 12 000 10 000	20 000 20 000 18 000	7013CTAP4 7013CTAP2 7013AMBP4	0,460 0,460 0,460

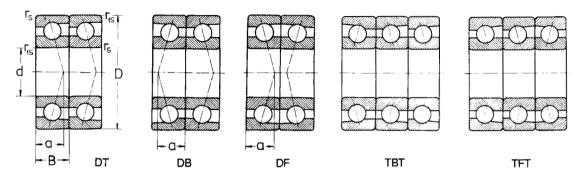
Dime	nsions					Basic :	radial	Speed I	imit	Designation	Weight
d	D	В	rs min.	r _{1s} min.	a	dyn. Cr	stat. Cor	easeng	oil		
mm						kN		min ⁻¹		-	kg
65	100 100 100 120 120	18 18 18 23 23	1,1 1,1 1,1 1,5 1,5	0,6 0,6 0,6 1	28 28 28 24 24	34 34 34 72 72	31 31 31 57 57	10 000 10 000 10 000 10 000 10 000	18 000 18 000 18 000 18 000 18 000	7013ATAP4 7013ATAP2 7013ATBP4 7213CTAP4 7213CTAP2	0,460 0,460 0,460 0,970 0,970
	120 120 120 120	23 23 23 23	1,5 1,5 1,5 1,5	1 1 1	33 33 33 33	69,5 69,5 69,5 69,5	54 54 54 54	9 000 9 000 9 000 9 000	16 000 16 000 16 000 16 000	7213ATAP4 7213ATAP2 7213ATBP4 7213ATBP2	0,970 0,970 0,970 0,970
70	110 110 110 110 110	20 20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	22 22 22 31 31	45,3 45,3 45,3 43 43	40,8 40,8 40,8 34 34	10 000 10 000 10 000 9 000 9 000	18 000 18 000 18 000 16 000 16 000	7014CTAP4 7014CTAP2 7014CTBP4 7014ATAP4 7014ATAP2	0,640 0,640 0,640 0,640 0,640
	125 125 125 125 125	24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	1 1 1 1	25 25 35 35 35	76 76 78 78 78	60,2 60,2 57 57 57	9 500 9 500 8 500 8 500 8 500	17 000 17 000 15 000 15 000 15 000	7214CTAP4 7214CTAP2 7214ATAP4 7214ATAP2 7214ATBP4	1,05 1,05 1,05 1,05 1,05
	125	24	1,5	1	35	78	57	8 500	15 000	7214ATBP2	1,05
75	115 115 115 115 115	20 20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	23 23 32 32 32	46,5 46,5 44 44 44	43,5 43,5 41,2 41,2 41,2	10 000 10 000 8 500 8 500 8 500	18 000 18 000 15 000 15 000 15 000	7015CTAP4 7015CTAP2 7015ATAP4 7015ATAP2 7015ATBP2	0,680 0,680 0,680 0,680 0,680
	130 130 130 130 130	25 25 25 25 25 25	1,5 1,5 1,5 1,5 1,5	1 1 1 1	26 26 37 37 37	80 80 73 73 73	65,5 65,5 60,5 60,5 60,5	9 000 9 000 8 000 8 000 8 000	16 000 16 000 14 000 14 000 14 000	7215CTAP4 7215CTAP2 7215ATAP4 7215ATAP2 7215ATBP4	1,15 1,15 1,15 1,15 1,15
	130	25	1,5	1	37	73	60,5	8 000	14 000	7215ATBP2	1,15
80	125 125 125 125 125	22 22 22 22 22 22	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	25 25 35 35 35	58,6 58,7 56 56,2 56	55,2 55,2 63 63 63	9 000 9 000 8 000 8 000 8 000	16 000 16 000 14 000 14 000 14 000	7016CTAP4 7016CTAP2 7016AMAP4 7016ATAP4 7016ATAP2	0,890 0,890 0,890 0,890 0,890
	140 140 140 140 140	26 26 26 26 26	2 2 2 2 2 2	1 1 1 1	28 28 39 39 39	92,6 93,2 86 86 86	78 78 73,5 73,5 73,5	7 500 8 000 7 000 7 000 7 000	13 000 14 000 12 000 12 000 12 000	7216CTAP4 7216CTAP2 7216ATAP4 7216ATAP2 7216ATBP4	1,40 1,40 1,40 1,40 1,40
	140	26	2	1	39	86	73,5	7 000	12 000	7216ATBP2	1,40



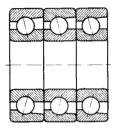
Dimer	sions					Basic (radial	Speed !	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	а	dyn. C _r	stat. C _{0r}	grease	oil		
mm						kN		min ⁻¹		-	kg
85	130 130 130 130 150	22 22 22 22 22 28	1,1 1,1 1,1 1,1 2	0,6 0,6 0,6 0,6 1	26 26 36 36 30	60,2 60,2 57 57 104	58,6 58,6 56 56 90	8 500 8 500 7 500 7 500 7 500	15 000 15 000 13 000 13 000 13 000	7017CTAP4 7017CTAP2 7017ATAP4 7017ATAP2 7217CTAP4	0,930 0,930 0,930 0,930 1,75
	150 150 150 150 150	28 28 28 28 28 28	2 2 2 2 2	1 1 1 1	30 42 42 42 42	104 98 98 98 98	90 76,5 76,5 76,5 76,5	7 500 6 700 6 700 6 700 6 700	13 000 11 000 11 000 11 000 11 000	7217CTAP2 7217ATAP4 7217ATAP2 7217ATBP4 7217ATBP2	1,75 1,75 1,75 1,75 1,75 1,75
90	140 140 140 140 140	24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	0,6 0,6 0,6 0,6 0,6	28 28 28 39 39	71,6 71,7 71,7 68 68	69 69,1 69,1 65,5 65,5	7 000 7 500 7 500 6 700 6 700	12 000 13 000 13 000 11 000 11 000	7018CTAP4 7018CTAP2 7018CTBP4 7018ATAP4 7018ATAP2	1,20 1,20 1,20 1,20 1,20 1,20
	160 160 160 160 160	30 30 30 30 30	2 2 2 2 2	1 1 1 1	32 32 44 44 44	123 123 117 117 117	105 105 100 100 100	7 000 7 000 6 000 6 000 6 000	12 000 12 000 9 500 9 500 9 500	7218CTAP4 7218CTAP2 7218AMAP4 7218ATAP4 7218ATAP2	2,15 2,15 2,15 2,15 2,15 2,15
	160 160	30 30	2 2	1	44 44	117 189	100 100	6 000 6 000	9 500 9 500	7218ATBP4 7218ATBP2	2,15 2,15
95	145 145 145 145 170	24 24 24 24 24 32	1,5 1,5 1,5 1,5 2,1	0,6 0,6 0,6 0,6 1,1	28 28 40 40 34	73,4 73,4 68 68 130	73,4 73,4 66 66 115	8 000 8 000 6 300 6 300 6 300	14 000 14 000 10 000 10 000 10 000	7019CTAP4 7019CTAP2 7019ATAP4 7019ATAP2 7219CTAP4	1,25 1,25 1,25 1,25 2,65
	170 170 170 170 170	32 32 32 32 32	2,1 2,1 2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1 1,1	34 47 47 47 47	130 126 126 126 126	115 110 110 110 110	6 300 5 600 5 600 5 600 5 600	10 000 9 000 9 000 9 000 9 000	7219CTAP2 7219ATAP4 7219ATAP2 7219ATBP4 7219ATBP2	2,65 2,65 2,65 2,65 2,65
100	150 150 150 150 150	24 24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	0,6 0,6 0,6 0,6 0,6	29 29 41 41 41	75,3 75,3 71,1 71 71	77,2 77,2 73 73 73	7 000 7 000 6 000 6 000 6 000	12 000 12 000 9 500 9 500 9 500	7020CTAP4 7020CTAP2 7020AMBP4 7020ATAP2 7020ATAP4	1,30 1,30 1,30 1,30 1,30
	180 180 180 180 180	34 34 34 34 34	2,1 2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1 1,1	36 36 50 50 50	148, 150 142 142 142	127 127 121 121 121	6 000 6 000 5300 5 300 5 300	9 500 9 500 8 500 8 500 8 500	7220CTAP4 7220CTAP2 7220AMAP4 7220ATAP4 7220ATAP2	3,20 3,15 3,15 3,15 3,15 3,15
	180	34	2,1	1,1	50	142	121	5 300	8 500	7220ATBP4	3,15

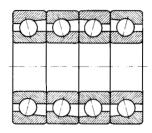

Dimen	sions				-	Basic load	radial	Speed I	imit	Designation	Weight
d	D	В	rs min.	r _{1s} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		_	kg
100	180	34	2,1	1,1	50	142	121	5 300	8 000	7220ATBP2	3,15
105	160	26	2	1	31	87	89	5 600	8 500	7021CTAP4	1,66
110	170	28	2	1	47	104	104	5 300	8 000	7022ATAP4	3,20
120	180 180 180	28 28 28	2 2 2	2 2 2	34 49 49	109 104 104	111 105 105	5 000 5 000 5 000	7 500 7 500 7 500	7024CTBP4 7024AMAP4 7024ATAP4	2,08 2,29 2,29
130	200 200	33 33	2	1	39 39	145 145	99 149	6 300 5 600	8 500 7 500	7026CMAP4 7026CTAP4	3,19 3,19
150	225 225 225	35 35 35	2,1 2,1 2,1	1,1 1,1 1,1	61 61 61	159 159 159	173 173 173	4 500 4 500 5 000	6 000 6 000 6 700	7030CMAP4 7030CTAP4 7030AMAP4	4,32 4,32 4,32

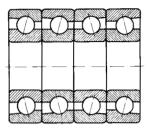
Dime	enoia					Basic	radial	Speed I	imit	Designation	Weight
đ	D	В	r _s min.	r _{1ş} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
10	26 26 26 30 30	8 8 8 9	0,3 0,3 0,3 0,6 0,6	0,1 0,1 0,1 0,3 0,3	6 6 6 7 7	8,6 8,6 8,6 9,4 9,4	4,9 4,9 4,9 5,9 5,9	48 000 43 000 43 000 43 000 38 000	80 000 70 000 70 000 70 000 63 000	7000CTAP4DT 7000CTAP4DB 7000CTAP4DF 7200CTAP4DT 7200CTAP4DB	0,040 0,040 0,040 0,058 0,058
	30	9	0,6	0,3	7	9,4	5,9	38 000	63 000	7200CTAP4DF	0,058
12	28 28 28 32 32	8 8 8 10 10	0,3 0,3 0,3 0,6 0,6	0,1 0,1 0,1 0,3 0,3	7 7 7 10 10	8,75 8,75 8,75 12,2 12,2	5,2 5,2 5,2 6,8 6,8	43 000 38 000 38 000 38 000 34 000	70 000 63 000 63 000 63 000 56 000	7001CTAP4DT 7001CTAP4DB 7001CTAP4DF 7201ATAP4DT 7201ATAP4DB	0,046 0,046 0,046 0,060 0,060
	32	10	0,6	0,3	10	12,2	6,8	34 000	56 000	7201ATAP4DF	0,060
15	32 32 32 32 32	9 9 9 9	0,3 0,3 0,3 0,3 0,3	0,1 0,1 0,1 0,1 0,1	8 8 8 8	10,2 10,2 10,2 16,6 10,2	6,8 6,8 6,8 13,6 6,8	36 000 32 000 32 000 28 000 36 000	60 000 53 000 53 000 48 000 60 000	7002CTAP4DT 7002CTAP4DB 7002CTAP4DF 7002CTAP4QBC 7002CTAP2DT	0,060 0,060 0,060 0,120 0,060
	32 35 35 35 35	9 11 11 11 11	0,3 0,6 0,6 0,6 0,6	0,1 0,3 0,3 0,3 0,3	8 9 9 9 12	10,2 14,4 14,4 14,4 14,1	6,8 9 9 9 8,8	36 000 34 000 30 000 30 000 30 000	60 000 56 000 50 000 50 000 50 000	7002CTBP4DT 7202CTAP4DT 7202CTAP4DB 7202CTAP4DF 7202ATAP4DT	0,060 0,084 0,084 0,084 0,048
	35 35 35	11 11 11	0,6 0,6 0,6	0,3 0,3 0,3	12 12 12	14,1 14,1 14,1	8,8 8,8 8,8	28 000 28 000 28 000	45 000 45 000 45 000	7202ATAP4DB 7202ATAP4DF 7202ATAP2DB	0,048 0,048 0,084
17	35 35 35 35 35	10 10 10 10 10	0,3 0,3 0,3 0,3 0,3	0,1 0,1 0,1 0,1 0,1	9 9 9 9	11,7 11,7 11,7 15,6 11,7	8,4 8,4 8,4 16,8 8,4	32 000 28 000 28 000 28 000 28 000	53 000 48 000 48 000 45 000 48 000	7003CTAP4DT 7003CTAP4DB 7003CTAP4DF 7003CTAP4TBT 7003CTAP2DB	0,078 0,078 0,078 0,117 0,078
	40 40 40 40 40	12 12 12 12 12	0,6 0,6 0,6 0,6 0,6	0,3 0,3 0,3 0,3 0,3	10 10 10 13 13	17,7 17,7 17,7 14,6 14,6	11,6 11,6 11,6 10,2 10,2	30 000 28 000 28 000 26 000 22 000	50 000 45 000 45 000 43 000 38 000	7203CTAP4DT 7203CTAP4DB 7203CTAP4DF 7203ATAP4DT 7203ATAP4DB	0,120 0,120 0,120 0,120 0,120 0,120
	40	12	0,6	0,3	13	14,6	10,2	22 000	38 000	7203ATAP4DF	0,120
20	42 42 42 42 42	12 12 12 12 12	0,6 0,6 0,6 0,6 0,6	0,3 0,3 0,3 0,3 0,3	10 10 10 10 10	17 17 17 27,7 17	12,2 12,2 12,2 24,4 12,2	28 000 24 000 24 000 22 000 24 000	45 000 40 000 40 000 36 000 40 000	7004CTAP4DT 7004CTAP4DB 7004CTAP4DF 7004CTAP4QBC 7004CTAP2DB	0,140 0,140 0,140 0,280 0,140



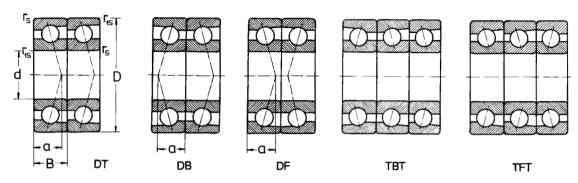
QBC


Dimer	sions					Basic r	adial	Speed li	mit	Designation	Weight
d	D	В	r _s min.	r _{1s} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
20	42 42 42 42 42	12 12 12 12 12	0,6 0,6 0,6 0,6 0,6	0,3 0,3 0,3 0,3 0,3	10 10 13 13	17 17 16,2 16,2 16,2	12,2 12,2 11,6 11,6 11,6	24 000 28 000 24 000 22 000 22 000	40 000 45 000 40 000 36 000 36 000	7004CTBP4DB 7004CTBP2DT 7004ATAP4DT 7004ATAP4DB 7004ATAP4DF	0,140 0,140 0,140 0,140 0,140
	47 47 47 47 47	14 14 14 14 14	1 1 1 1	0,6 0,6 0,6 0,6 0,6	12 12 12 12 12	25,3 25,3 25,3 25,3 25,3	18 18 18 18	26 000 22 000 22 000 26 000 22 000	43 000 38 000 38 000 43 000 38 000	7204CTAP4DT 7204CTAP4DB 7204CTAP4DF 7204CTBP4DT 7204CTBP4DB	0,200 0,200 0,200 0,200 0,200
	47 47 47 47 47	14 14 14 14 14	1 1 1 1	0,6 0,6 0,6 0,6 0,6	12 12 15 15 15	25,3 25,3 24,2 24,2 24,2	18 18 17,2 17,2 17,2	22 000 22 000 22 000 20 000 20 000	38 000 38 000 38 000 34 000 34 000	7204CTBP4DF 7204CTBP2DF 7204ATAP4DT 7204ATAP4DB 7204ATAP4DF	0,200 0,200 0,200 0,200 0,200
25	47 47 47 47 47	12 12 12 12 12	0,6 0,6 0,6 0,6 0,6	0,3 0,3 0,3 0,3 0,3	11 11 11 11 11	17 19 19 19 19	14,8 14,8 14,8 14,8 14,8	24 000 22 000 22 000 24 000 22 000	40 000 36 000 36 000 40 000 36 000	7005CTAP4DT 7005CTAP4DB 7005CTAP4DF 7005CTAP2DT 7005CTAP2DB	0,160 0,160 0,160 0,160 0,160
	47 47 47 47 47	12 12 12 12 12	0,6 0,6 0,6 0,6 0,6	0,3 0,3 0,3 0,3 0,3	11 11 11 15 15	25,3 19 19 16,9 16,9	22,2 14,8 14,8 13,9 13,9	20 000 24 000 22 000 22 000 19 000	34 000 40 000 36 000 36 000 32 000	7005CTAP2TBT 7005CTBP2DT 7005CTBP2DB 7005ATAP4DT 7005ATAP4DB	0,240 0,160 0,160 0,160 0,160
	47 52 52 52 52	12 15 15 15 15	0,6 1 1 1 1	0,3 0,6 0,6 0,6 0,6	15 13 13 13 13	16,9 26,9 26,9 26,9 43,8	13,9 20,6 20,6 20,6 41,2	19 000 22 000 20 000 20 000 18 000	32 000 38 000 34 000 34 000 30 000	7005ATAP4DF 7205CTAP4DT 7205CTAP4DB 7205CTAP4DF 7205CTAP4QBC	0,160 0,240 0,240 0,240 0,120
	52 52 52 52 52	15 15 15 15 15	1 1 1 1	0,6 0,6 0,6 0,6 0,6	13 13 13 13 13	26,9 26,9 26,9 26,9 26,9	20,6 20,6 20,6 20,6 20,6	22 000 20 000 22 000 20 000 20 000	38 000 34 000 38 000 34 000 34 000	7205CTAP2DT 7205CTAP2DB 7205CTBP4DT 7205CTBP4DB 7205CTBP4DF	0,240 0,240 0,240 0,240 0,240
	52 52 52 52 52	15 15 15 15 15	1 1 1 1	0,6 0,6 0,6 0,6 0,6	13 17 17 17 17	43,8 22,2 22,2 22,2 29,6	41,2 17,6 17,6 17,6 26,4	18 000 20 000 18 000 18 000 17 000	30 000 34 000 30 000 30 000 28 000	7205CTBP4QBC 7205ATAP4DT 7205ATAP4DB 7205ATAP4DF 7205ATAP4TFT	0,480 0,240 0,240 0,240 0,360
30	55 55 55 55	13 13 13 13	1 1 1	0,3 0,3 0,3 0,3	12 12 12 12	24,5 24,5 24,5 32,6	20,6 20,6 20,6 30,9	22 000 19 000 19 000 18 000	36 000 32 000 32 000 30 000	7006CTAP4DT 7006CTAP4DB 7006CTAP4DF 7006CTAP4TBT	0,240 0,240 0,240 0,360

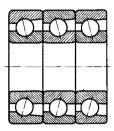


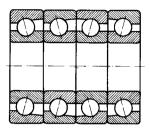


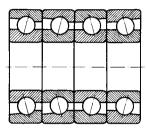
Dime	nsions					Basic I	radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		_	kg
30	55 55 55 55 55	13 13 13 13 13	1 1 1 1	0,3 0,3 0,3 0,3 0,3	12 12 17 17 17	24,5 24,5 21,7 21,7 21,7	20,6 20,6 19 19	19 000 22 000 19 000 17 000 17 000	32 000 36 000 32 000 28 000 28 000	7006CTAP2DB 7006CTBP2DT 7006ATAP4DT 7006ATAP4DB 7006ATAP4DB	0,240 0,240 0,240 0,240 0,240 0,240
	62 62 62 62 62	16 16 16 16 16	1 1 1 1	0,6 0,6 0,6 0,6 0,6	14 14 14 14 14	37,3 37,3 37,3 49,7 49,7	29,6 29,6 29,6 44,4 44,4	20 000 18 000 18 000 17 000 17 000	34 000 30 000 30 000 28 000 28 000	7206CTAP4DT 7206CTAP4DB 7206CTAP4DF 7206CTAP4TT 7206CTAP4TBT	0,380 0,380 0,380 0,570 0,570
	62 62 62 62 62	16 16 16 16 16	1 1 1 1	0,6 0,6 0,6 0,6 0,6	14 14 14 14 14	60,7 37,3 37,3 37,3 37,3	59,2 29,6 29,6 29,6 29,6	16 000 20 000 18 000 20 000 18 000	26 000 34 000 30 000 34 000 30 000	7206CTAP4QFC 7206CTAP2DT 7206CTAP2DB 7206CTBP4DT 7206CTBP4DB	0,760 0,380 0,380 0,380 0,380
	62 62 62 62 62	16 16 16 16	1 1 1 1	0,6 0,6 0,6 0,6 0,6	14 14 14 19 19	37,3 49,7 60,7 35,7 35,7	29,6 44,4 59,2 28,2 28,2	18 000 17 000 16 000 18 000 17 000	30 000 28 000 26 000 30 000 28 000	7206CTBP4DF 7206CTBP4TT 7206CTBP4QFC 7206ATAP4DT 7206ATAP4DB	0,380 0,570 0,760 0,380 0,380
	62	16	1	0,6	19	35,7	28,2	17 000	28 000	7206ATAP4DF	0,380
35	62 62 62 62 62	14 14 14 14 14	1 1 1 1	0,3 0,3 0,3 0,3 0,3	14 14 14 14 14	31,1 31,1 31,1 31,1 31,1	27,4 27,4 27,4 27,4 27,4	19 000 17 000 17 000 17 000 17 000	32 000 28 000 28 000 28 000 28 000	7007CTAP4DT 7007CTAP4DB 7007CTAP4DF 7007CTAP2DB 7007CTBP4DB	0,320 0,320 0,320 0,320 0,320 0,320
	62 62 62 62 72	14 14 14 14 17	1 1 1 1 1,1	0,3 0,3 0,3 0,3 0,6	14 19 19 19 16	31,1 29,5 29,5 29,5 49,3	27,4 26,2 26,2 26,2 40,4	19 000 17 000 16 000 16 000 18 000	32 000 28 000 26 000 26 000 30 000	7007CTBP2DT 7007ATAP4DT 7007ATAP4DB 7007ATAP4DF 7207CTAP4DT	0,320 0,320 0,320 0,320 0,320 0,540
	72 72 72 72 72 72	17 17 17 17 17	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	16 16 16 16 16	49,3 49,3 65,7 80,3 49,3	40,4 40,4 60,6 80,8 40,4	17 000 17 000 16 000 14 000 18 000	28 000 28 000 26 000 24 000 30 000	7207CTAP4DB 7207CTAP4DF 7207CTAP4TFT 7207CTAP4QFC 7207CTBP4DT	0,540 0,540 0,810 1,08 0,540
	72 72 72 72 72 72	17 17 17 17 17	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	16 16 21 21 21	49,3 49,3 39,7 39,7 39,7	40,4 40,4 34 34 34	17 000 17 000 16 000 13 000 13 000	28 000 28 000 26 000 22 000 22 000	7207CTBP4DB 7207CTBP4DF 7207ATAP4DT 7207ATAP4DB 7207ATAP4DF	0,540 0,540 0,540 0,540 0,540 0,540
40	68 68	15 15	1	0,3 0,3	15 15	33,4 33,4	31,8 31,8	18 000 17 000	30 000 28 000	7008CTAP4DT 7008CTAP4DB	0,380 0,380



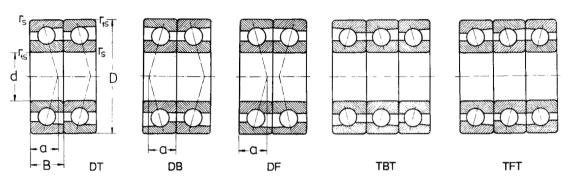
TT QFC QBC


Dimer	nsions					Basic i	adial	Speed limit		Designation	Weight
d	D	В	r _s min.	r _{1s} min.	a	dyn. Cr	stat. Cor	grease oi	l 		
mm						kN		min ⁻¹		-	kg
40	68 68 68 68 68	15 15 15 15 15	1 1 1 1	0,3 0,3 0,3 0,3 0,3	15 15 15 15 15	33,4 33,4 33,4 33,4 33,4	31,8 31,8 31,8 31,8 31,8	18 000 30 17 000 28 18 000 30	3 000 3 000 3 000 3 000 3 000	7008CTAP4DF 7008CTAP2DT 7008CTAP2DB 7008CTBP4DT 7008CTBP4DB	0,380 0,380 0,380 0,380 0,380
	68 68 68 68 68	15 15 15 15 15	† † † † † † † † † † † † † † † † † † †	0,3 0,3 0,3 0,3 0,3	20 20 20 20 20 15	31,6 31,6 31,6 31,6 44,5	30 30 30 30 47,7	13 000 22	2 000 2 000 2 000 2 000 2 000	7008ATAP4DT 7008ATAP4DB 7008ATAP4DF 7008ATBP4DB 7008ATBP4TBT	0,380 0,380 0,380 0,380 0,570
	80 80 80 80 80	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	17 17 17 17 17	58,8 58,8 58,8 58,8 58,8	50,4 50,4 50,4 50,4 50,4	14 000 24 14 000 24 17 000 28	3 000 4 000 4 000 4 000	7208CTAP4DT 7208CTAP4DB 7208CTAP4DF 7208CTBP4DT 7208CTBP4DB	0,700 0,700 0,700 0,700 0,700 0,700
	80 80 80 80 80	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	17 17 17 17 23	58,8 78,4 95,8 95,8 57	50,4 75,6 101 101 48,8	13 000 22 13 000 22	000 2 000 2 000 2 000 4 000	7208CTBP4DF 7208CTBP4TT 7208CTBP4QT 7208CTBP4QFC 7208ATAP4DT	0,700 1,05 1,40 1,40 0,700
	80 80 80 80 80	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	23 23 23 23 17	57 57 57 57 95,8	48,8 48,8 48,8 48,8 101	12 000 20 14 000 24 12 000 20	0 000 0 000 4 000 0 000 3 000	7208ATAP4DB 7208ATAP4DF 7208ATBP4DT 7208ATBP4DB 7208ATBP4QT	0,700 0,700 0,700 0,700 1,40
45	75 75 75 75 75	16 16 16 16 16	1 1 1 1	0,3 0,3 0,3 0,3 0,3	16 16 16 16 16	39,5 39,5 39,5 52,7 64,5	38,6 38,6 38,6 57,9 77,2	16 000 26 13 000 22 13 000 22 13 000 22 12 000 20	6 000 2 000 2 000 2 000 2 000	7009CTAP4DT 7009CTAP4DB 7009CTAP4DF 7009CTAP4TBT 7009CTAP4QBC	0,500 0,500 0,500 0,500 0,750 1,00
	75 75 75 75 75	16 16 16 16 16	1 1 1 1	0,3 0,3 0,3 0,3 0,3	16 16 22 22 22	39,5 39,5 35,7 35,7 35,7	38,6 38,6 34,6 34,6 34,6	14 000 24 12 000 20	6 000 2 000 4 000 0 000	7009CTAP2DT 7009CTAP2DB 7009ATAP4DT 7009ATAP4DB 7009ATAP4DF	0,500 0,500 0,500 0,500 0,500
	85 85 85 85 85	19 19 19 19 19	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	18 18 18 18 25	64,8 64,8 64,8 64,8 59,6	58 58 58 58 55	12 000 20 12 000 20 14 000 24	4 000 0 000 0 000 4 000 0 000	7209CTAP4DT 7209CTAP4DB 7209CTAP4DF 7209CTAP2DT 7209ATAP4DT	0,800 0,800 0,800 0,800 0,800
	85 85 85 85	19 19 19 19	1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6	25 25 18 25	59,6 59,6 64,8 59,6	55 55 58 55	11 000 18 11 000 18	3 000 3 000 3 000 0 000	7209ATAP4DB 7209ATAP4DF 7209CTAP2DB 7209ATBP4DT	0,800 0,800 0,800 0,800

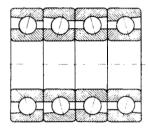


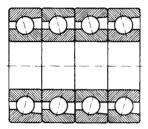


Dime	nsions					Basic ı load	adial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	а	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
45	85 85	19 19	1,1 1,1	0,6 0,6	25 25	59,6 59,6	55 55	11 000 11 000	18 000 18 000	7209ATBP4DB 7209ATBP4DF	0,800 0,800
50	80 80 80 80 80	16 16 16 16 16	1 1 1 1	0,3 0,3 0,3 0,3 0,3	17 17 17 17 17	40,7 40,7 40,7 66,3 40,7	41,4 41,4 41,4 82,8 41,4	14 000 12 000 12 000 11 000 14 000	24 000 20 000 20 000 18 000 24 000	7010CTAP4DT 7010CTAP4DB 7010CTAP4DF 7010CTAP4QBC 7010CTAP2DT	0,520 0,520 0,520 1,04 0,520
	80 80 80 80 90	16 16 16 16 20	1 1 1 1 1,1	0,3 0,3 0,3 0,3 0,6	17 23 23 23 20	40,7 37,6 37,6 37,6 69,4	41,4 40 40 40 63,4	12 000 12 000 11 000 11 000 13 000	20 000 20 000 18 000 18 000 22 000	7010CTAP2DB 7010ATAP4DT 7010ATAP4DB 7010ATAP4DF 7210CTAP4DT	0,520 0,520 0,520 0,520 0,520 0,900
	90 90 90 90 90	20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	20 20 27 27 27	69,4 69,4 68 68 68	63,4 63,4 62 62 62	11 000 11 000 11 000 9 500 9 500	19 000 19 000 18 000 16 000 16 000	7210CTAP4DB 7210CTAP4DF 7210ATAP4DT 7210ATAP4DB 7210ATAP4DF	0,900 0,900 0,900 0,900 0,900
	90 90 90 90	20 20 20 20	1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6	27 27 27 27	68 68 68 68	62 62 62 62	11 000 9 500 9 500 11 000	18 000 16 000 16 000 18 000	7210ATBP4DT 7210ATBP4DB 7210ATBP4DF 7210ATBP2DT	0,900 0,900 0,900 0,900
55	90 90 90 90 90	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	19 19 19 19	55,3 55,3 55,3 73,7 73,7	57,2 57,2 57,2 85,2 85,2	12 000 11 000 11 000 10 000 10 000	20 000 18 000 18 000 17 000 17 000	7011CTAP4DT 7011CTAP4DB 7011CTAP4DF 7011CTAP4TT 7011CTAP4TBT	0,780 0,780 0,780 1,17 1,17
	90 90 90 100 100	18 18 18 21 21	1,1 1,1 1,1 1,5 1,5	0,6 0,6 0,6 1	26 26 26 21 21	52,3 52,3 52,3 85,9 85,9	54,2 54,2 54,2 80 80	11 000 9 500 9 500 11 000 9 500	18 000 16 000 16 000 18 000 16 000	7011ATAP4DT 7011ATAP4DB 7011ATAP4DF 7211CTAP4DT 7211CTAP4DB	0,780 0,780 0,780 1,20 1,20
	100 100 100 100 100	21 21 21 21 21	1,5 1,5 1,5 1,5 1,5	1 1 1 1	21 29 29 29 29	85,9 82 82 82 82	80 76,6 76,6 76,6 76,6	9 500 10 000 9 000 9 000 9 000	16 000 17 000 15 000 15 000 15 000	7211CTAP4DF 7211ATAP4DT 7211ATAP4DB 7211ATAP4DF 7211ATAP2DB	1,20 1,20 1,20 1,20 1,20
	100 100 100	21 21 21	1,5 1,5 1,5	1 1 1	29 29 29	82 82 82	76,6 76,6 76,6	10 000 9 000 9 000	17 000 15 000 15 000	7211ATBP4DT 7211ATBP4DB 7211ATBP4DF	1,20 1,20 1,20
60	95 95 95 95	18 18 18 18	1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6	20 20 20 20	56,7 56,7 56,7 75,6	61 61 61 91,5	11 000 9 500 9 500 9 000	18 000 16 000 16 000 15 000	7012CTAP4DT 7012CTAP4DB 7012CTAP4DF 7012CTAP4TBT	0,840 0,840 0,840 1,26

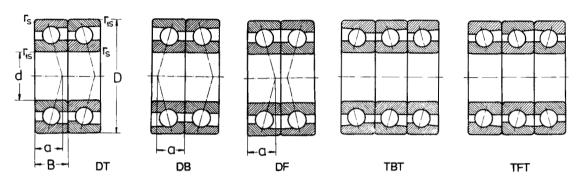


TT QFC QBC


Dimer	anoiar					Basic (adial	Speed I	imit	Designation	Weight
d 	D	В	r _s min.	r _{1ş} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
60	95 95 95 95 95	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	20 20 27 27 27	92,4 56,7 53,8 53,8 53,8	122 61 58,2 58,2 58,2	8 500 9 500 10 000 9 000 9 000	14 000 16 000 17 000 15 000 15 000	7012CTAP4Q8C 7012CTBP2DB 7012ATAP4DT 7012ATAP4DB 7012ATAP4DF	1,68 0,840 0,840 0,840 0,840
	95 110 110 110 110	18 22 22 22 22 22	1,1 1,5 1,5 1,5 1,5	0,6 1 1 1	27 23 23 23 23 23	53,8 104 104 104 138	58,2 98 98 98 98 147	9 000 10 000 9 000 9 000 8 500	15 000 17 000 15 000 15 000 14 000	7012ATAP2DF 7212CTAP4DT 7212CTAP4DB 7212CTAP4DF 7212CTAP4TBT	0,840 1,54 1,54 1,54 2,31
	110 110 110 110 110	22 22 22 22 22 22	1,5 1,5 1,5 1,5 1,5	1 1 1 1	23 31 31 31 31	104 98,8 98,8 98,8 98,8	98 95 95 95 95	9 000 9 000 8 500 8 500 9 000	15 000 15 000 14 000 14 000 15 000	7212CTAP2DB 7212ATAP4DT 7212ATAP4DB 7212ATAP4DF 7212ATAP4DF 7212ATBP4DT	1,54 1,54 1,54 1,54 1,54
	110 110	22 22	1,5 1,5	1 1	31 31	98,8 98,8	95 95	8 500 8 500	14 000 14 000	7212ATBP4DB 7212ATBP4DF	1,54 1,54
65	100 100 100 100 100	18 18 18 18 18	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	20 20 20 20 20 20	58,3 58,3 58,3 77,8 95	65 65 65 97,5 130	11 000 9 500 9 500 9 000 8 500	18 000 16 000 16 000 15 000 14 000	7013CTAP4DT 7013CTAP4DB 7013CTAP4DF 7013CTAP4TBT 7013CTAP4QBC	0,920 0,920 0,920 1,38 1,84
	100 100 100 100 120	18 18 18 18 23	1,1 1,1 1,1 1,1 1,5	0,6 0,6 0,6 0,6 1	20 28 28 28 28 24	77,8 55 55 55 117	97,5 62 62 62 114	9 000 9 500 8 500 8 500 9 500	15 000 16 000 14 000 14 000 20 000	7013CTAP2TBT 7013AMBP4DT 7013ATAP4DB 7013ATAP4DF 7213CTAP4DT	1,38 0,920 0,920 0,920 1,94
	120 120 120 120 120	23 23 23 23 23 23	1,5 1,5 1,5 1,5 1,5	1 1 1 1	24 24 24 33 33	117 117 117 113 113	114 114 114 108 108	8 500 8 500 9 500 8 500 8 000	14 000 14 000 16 000 14 000 13 000	7213CTAP4DB 7213CTAP4DF 7213CTAP2DT 7213ATAP4DT 7213ATAP4DB	1,94 1,94 1,94 1,94 1,94
	120 120 120 120	23 23 23 23	1,5 1,5 1,5 1,5	1 1 1	33 33 33 33	113 113 113 113	108 108 108 108	8 000 8 500 8 000 8 000	13 000 14 000 13 000 13 000	7213ATAP4DF 7213ATBP4DT 7213ATBP4DB 7213ATBP4DF	1,94 1,94 1,94 1,94
70	110 110 110 110 110	20 20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	22 22 22 31 31	73,4 73,4 73,4 93 69,7	81,6 81,6 81,6 102 68	9 500 8 500 8 500 8 500 8 500	16 000 14 000 14 000 14 000 14 000	7014CTAP4DT 7014CTAP4DB 7014CTAP4DF 7014CTAP4TBT 7014AMBP4DT	1,28 1,28 1,28 1,92 1,28
	110 110	20 20	1,1 1,1	0,6 0,6	31 31	114 69,7	136 68	6 700 8 500	11 000 14 000	7014AMBP4QBC 7014ATAP4DT	2,56 1,28

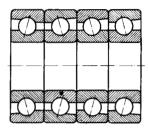


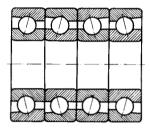
Dimer	nsio ns					Basic	radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	a	load dyn. C _r	stat. C _{0r}	grease	oil		
mm						kN		min ⁻¹		-	kg
70	110 110 110 125	20 20 20 24	1,1 1,1 1,1 1,5	0,6 0,6 0,6 1	31 31 31 25	69,7 69,7 93 123	68 68 102 120	8 000 8 000 7 000 9 000	12 000 13 000 13 000 15 000	7014ATAP4DB 7014ATAP4DF 7014ATAP2TBT 7214CTAP4DT	1,28 1,28 1,92 2,10
	125 125 125 125 125	24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	1	25 25 25 35 35	123 123 123 126 126	120 120 120 114 114	8 500 8 500 8 500 8 500 7 000	14 000 14 000 14 000 14 000 12 000	7214CTAP4DB 7214CTAP4DF 7214CTAP2DB 7214ATAP4DT 7214ATAP4DB	2,10 2,10 2,10 2,10 2,10 2,10
	125 125 125 125	24 24 24 24	1,5 1,5 1,5 1,5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	35 35 35 35	126 126 126 126	114 114 114 114	7 000 8 500 7 000 7 000	12 000 14 000 12 000 12 000	7214ATAP4DF 7214ATBP4DT 7214ATBP4DB 7214ATBP4DF	2,10 2,10 2,10 2,10 2,10
75	115 115 115 115 115	20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	23 23 23 32 23	75,4 75,4 75,4 71,3 100	87 87 87 82,4 131	9 500 8 500 8 500 7 000 6 700	16 000 14 000 14 000 12 000 11 000	7015CTAP4DT 7015CTAP4DB 7015CTAP4DF 7015AMAP4DB 7015AMAP4TBT	1,36 1,36 1,36 1,36 2,04
	115 115 115 115 115	20 20 20 20 20	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	32 32 32 32 32	116 71,3 71,3 71,3 71,3	165 82,4 82,4 82,4 82,4	6 700 8 500 7 000 7 000 7 000	11 000 14 000 11 000 11 000 12 000	7015AMAP4QBC 7015ATAP4DT 7015ATAP4DB 7015ATAP4DF 7015ATBP2DB	2,72 1,36 1,36 1,36 1,36
	130 130 130 130 130	25 25 25 25 25 25	1,5 1,5 1,5 1,5 1,5	1 1 1 1	26 26 26 37 37	130 130 130 118 118	131 131 131 121 121	8 500 8 000 8 000 8 000 6 700	14 000 13 000 13 000 13 000 11 000	7215CTAP4DT 7215CTAP4DB 7215CTAP4DF 7215ATAP4DT 7215ATAP4DB	2,30 2,30 2,30 2,30 2,30
	130 130 130 130	25 25 25 25	1,5 1,5 1,5 1,5	1 1 1	37 37 37 37	118 118 118 118	121 121 121 121	6 700 8 000 6 700 6 700	11 000 13 000 11 000 11 000	7215ATAP4DF 7215ATBP4DT 7215ATBP4DB 7215ATBP4DF	2,30 2,30 2,30 2,30
80	125 125 125 125 125	22 22 22 22 22 22	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	25 25 25 35 35	95 95 95 91 91	110 110 110 126 126	8 500 8 000 8 000 8 000 6 700	14 000 13 000 13 000 13 000 11 000	7016CTAP4DT 7016CTAP4DB 7016CTAP4DF 7016AMAP4DT 7016AMAP4DB	1,78 1,78 1,78 1,78 1,78
	125 125 125 125 125 140	22 22 22 22 26	1,1 1,1 1,1 1,1 2	0,6 0,6 0,6 0,6 1	25 35 35 35 28	155 91 91 91 151	221 126 126 126 156	6 000 8 000 6 700 6 700 7 000	10 000 13 000 11 000 11 000 12 000	7016AMAP4QBC 7016ATAP4DT 7016ATAP4DB 7016ATAP4DF 7216CTAP4DT	3,56 1,78 1,78 1,78 2,80
	140	26	2	1	28	151	156	6 000	10 000	7216CTAP4DB	2,80



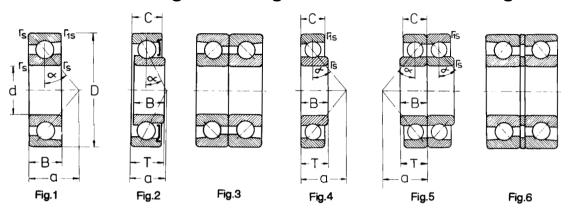
QBC

QT


Dimer	nsions					Basic load	radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1s} min.	a	dyn. Cr	stat. C _{0r}	grease	oil		
mm						kN		min ⁻¹		-	kg
80	140 140 140 140 140 140	26 26 26 26 26 26	2 2 2 2 2	4- 4- 4- 4-	28 28 28 28 28 28	151 201 151 151 151	156 234 156 156 156	6 000 6 000 7 000 6 000 6 000	10 000 10 000 12 000 10 000 10 000	7216CTAP4DF 7216CTAP4TBT 7216CTAP2DT 7216CTAP2DB 7216CTAP2DF	2,80 4,20 2,80 2,80 2,80 2,80
	140 140 140 140 140	26 26 26 26 26	2 2 2 2 2	1 1 1	28 39 39 39 39	246 139 139 139 139	312 147 147 147 147	5 300 6 700 5 600 5 600 6 700	9 000 11 000 9 500 9 500 11 000	7216CTAP2QBC 7216ATAP4DT 7216ATAP4DB 7216ATAP4DF 7216ATAP4DF 7216ATBP4DT	5,60 2,80 2,80 2,80 2,80 2,80
	140 140	26 26	2 2	1	39 39	139 139	147 147	5 600 5 600	9 500 9 500	7216ATBP4DB 7216ATBP4DF	2,80 2,80
85	130 130 130 130 130	22 22 22 22 22 22	1,1 1,1 1,1 1,1 1,1	0,6 0,6 0,6 0,6 0,6	26 26 26 36 36	97,5 97,5 97,5 92 92	117 117 117 112 112	8 500 7 000 7 000 7 000 6 000	14 006 12 006 12 006 12 000 12 000	7017CTAP4DT 7017CTAP4DB 7017CTAP4DF 7017ATAP4DT 7017ATAP4DB	1,86 1,86 1,86 1,86 1,86
	130 150 150 150 150	22 28 28 28 28 28	1,1 2 2 2 2	0,6 1 1 1	36 30 30 30 42	92 168 168 168 159	112 180 180 180 180	6 000 7 000 6 000 6 000 6 000	10 000 12 000 10 000 10 000 10 000	7017ATAP4DF 7217CTAP4DT 7217CTAP4DB 7217CTAP4DF 7217ATAP4DT	1,86 3,50 3,50 3,50 3,50
	150 150 150 150 150	28 28 28 28 28	2 2 2 2 2	1 1 1 1	42 42 42 42 42	159 159 159 159 159	153 153 153 153 153	5 300 5 300 6 000 5 300 5 300	9 000 9 000 10 000 9 000 9 000	7217ATAP4DB 7217ATAP4DF 7217ATBP4DT 7217ATBP4DB 7217ATBP4DB	3,50 3,50 3,50 3,50 3,50
90	140 140 140 140 140	24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	0,6 0,6 0,6 0,6 0,6	28 28 28 28 28	116 116 116 116 155	138 138 138 • 138 207	7 000 7 000 6 000 6 000 5 300	12 000 12 000 10 000 10 000 10 000	7018CMBP4DT 7018CTAP4DT 7018CTAP4DB 7018CTAP4DF 7018CTAP4TBT	2,40 2,40 2,40 2,40 3,60
	140 140 140 140 140	24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	0,6 0,6 0,6 0,6 0,6	39 39 39 39 39	110 147 180 110 110	131 262 262 131 131	6 000 5 000 4 500 6 000 5 300	10 000 8 500 7 500 10 000 9 000	7018AMBP4DT 7018AMBP4TBT 7018AMBP4QT 7018ATAP4DT 7018ATAP4DB	2,40 3,60 4,80 2,40 2,40
	140 160 160 160 160	24 30 30 30 30	1,5 2 2 2 2	0,6 1 1 1	39 32 32 32 44	110 199 199 199 189	131 210 210 210 200	5 300 6 700 5 600 5 600 5 000	9 000 11 000 9 500 9 500 8 500	7018ATAP4DF 7218CTAP4DT 7218CTAP4DB 7218CTAP4DF 7218AMAP4DT	2,40 4,30 4,30 4,30 4,30
	160	30	2	1	44	189	200	4 500	7 500	7218AMAP4DB	4,30

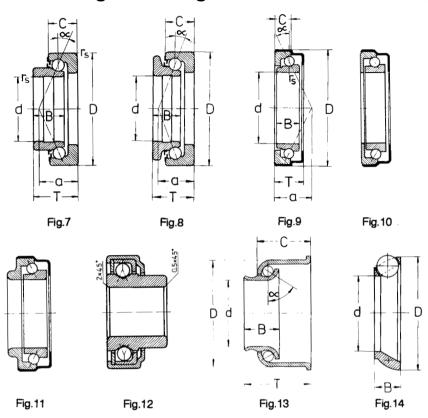


Dime	nsions					Basic I	radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	a	dyn. Cr	stat. Cor	grease	oil		
mm						kN		min ⁻¹		-	kg
90	160 160 160 160 160 160	30 30 30 30 30 30 30	222222	1 1 1 1 1 1	44 44 44 44 44 44	189 189 189 189 189 189 189	200 200 200 200 200 200 200 200	4 500 5 000 4 500 4 500 5 000 4 500 4 500	7 500 8 500 7 500 7 500 8 500 7 500 7 500	7218AMAP4DF 7218ATAP4DT 7218ATAP4DB 7218ATAP4DF 7218ATBP4DF 7218ATBP4DB 7218ATBP4DB 7218ATBP4DF	4,30 4,30 4,30 4,30 4,30 4,30 4,30
95	145 145 145 145 145	24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	0,6 0,6 0,6 0,6 0,6	28 28 28 40 40	119 119 119 110 110	147 147 147 132 132	8 000 6 700 6 700 5 300 4 800	13 000 11 000 11 000 9 000 8 000	7019CTAP4DT 7019CTAP4DB 7019CTAP4DF 7019ATAP4DT 7019ATAP4DB	2,50 2,50 2,50 2,50 2,50 2,50
	145 170 170 170 170	24 32 32 32 32 32	1,5 2,1 2,1 2,1 2,1	0,6 1,1 1,1 1,1 1,1	40 34 34 34 34	110 211 211 211 211	132 230 230 230 230	4 800 5 300 4 800 4 800 4 800	8 000 9 000 8 000 8 000 8 000	7019ATAP4DF 7219CTAP4DT 7219CTAP4DB 7219CTAP4DF 7219CTAP4DF 7219CTAP2DB	2,50 5,30 5,30 5,30 5,30 5,30
	170 170 170 170 170	32 32 32 32 32	2,1 2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1 1,1	47 47 47 47 47	204 204 204 126 126	220 220 220 220 220 220	4 800 4 300 4 300 4 800 4 300	8 000 7 000 7 000 8 000 7 000	7219ATAP4DT 7219ATAP4DB 7219ATAP4DF 7219ATBP4DT 7219ATBP4DB	5,30 5,30 5,30 5,30 5,30 5,30
	170	32	2,1	1,1	47	126	220	4 300	7 000	7219ATBP4DF	5,30
100	150 150 150 150 150	24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	0,6 0,6 0,6 0,6 0,6	29 29 29 41 29	122 122 122 115 163	154 154 154 146 231	6 700 5 600 5 600 5 000 4 300	11 000 9 500 9 500 8 500 7 000	7020CTAP4DT 7020CTAP4DB 7020CTAP4DF 7020AMBP4DT 7020AMBP4TBT	2,60 2,60 2,60 2,60 3,90
	150 150 150 150 150	24 24 24 24 24	1,5 1,5 1,5 1,5 1,5	0,6 0,6 0,6 0,6 0,6	41 41 41 41 41	188 115 115 115 115	292 146 146 146 146	4 000 4 500 5 000 4 500 4 500	6 700 7 500 8 500 7 500 7 500	7020AMBP4QBT 7020AMBP2DB 7020ATAP4DT 7020ATAP4DB 7020ATAP4DF	5,20 2,60 2,60 2,60 2,60 2,60
	180 180 180 180	34 34 34 34	2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1	36 36 36 36	243 243 243 398	254 254 254 508	5 000 4 500 4 500 4 000	8 500 7 500 7 500 6 700	7220CTAP4DT 7220CTAP4DB 7220CTAP4DF 7220CTAP4QBC	6,30 6,30 6,30 12,6
	180 180 180 180 180	34 34 34 34 34	2,1 2,1 2,1 2,1 2,1	1,1 1,1 1,1 1,1 1,1	50 50 50 50 50	230 230 230 230 230	243 243 243 243 243	4 500 4 000 4 500 4 000 4 000	7 500 6 700 7 500 6 700 6 700	7220AMAP4DT 7220AMAP4DB 7220ATAP4DT 7220ATAP4DB 7220ATAP4DF	6,30 6,30 6,30 6,30 6,30
	180	34	2,1	1,1	50	230	243	4 500	7 500	7220ATBP4DT	6,30

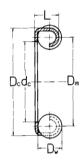

QBT

QBC

Dimen	sions					Basic load	radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	r _{1ş} min.	a	dyn. Cr	stat. Cor	grease	oil		
nm						kN		min ⁻¹		-	kg
100	180 180	34 34	2,1 2,1	1,1	50 50	230 230	243 243	4 000 4 000	6 700 6 700	7220ATBP4DB 7220ATBP4DF	6,30 6,30
105	160	26	2	1	31	143	178	4 500	7 500	7021CTAP4DB	3,32
110	170	28	2	1	47	169	208	3 800	6 300	7022ATAP4DB	6,40
120	180	28	2	2	49	169	210	3 600	6 000	7024AMAP4DB	2,29
130	200 200	33 33	2	1	39 39	313 235	298 298	3 800 4 000	6 300 6 700	7026CMAP4TBT 7026CTAP4DB	9,57 6,38
150	225	35	2,1	1,1	61	258	346	2 800	4 500	7030AMAP4DB	8,64


Non-standard single-row angular contact ball bearings

Dime	ensior	18							Fig.	load		Speed li	mit	Designation	Weight
d	D	В	С	T	а	α	r _s min.	Γ _{1s} min.		dyn. Cr	stat. C _{Or}	grease	oil	,	
mm						degre	ees	mm		_	kN		min ⁻¹		-
35	55	7	7		8,7	16	0,3	0,3	1	7,95	6,73	9 000	13 000	70907CMB	0,066
58	100	20,5	20,5	21	30,2	25	1,5	0,6	2	44,7	26,4	5 300	7 000	7512AZ	0,595
70	180 180 180	42 42 42	24 42 42	89	73,8 73,8 73,8	40 40 40	3 3 3	3 3 3	1 3 6	148 237 148	118 236 118	3 200 2 500 3 200	4 800 3 800 4 800	7414BMB 7414BMBDB 7414BMP5DBT	5,46 10,9 48,0
110	175	30	30		28,2	26	1	0,6	1	105	83,4	2 400	3 400	7522AM	2,60
150	210 210	28 28	25 25	28 28	86 88,1	40 40	2	4	4 5	154 246	160 320	2 000 1 600	3 000 2 400	7530BBM 7530BMDB	2,95 5,91
160	400	88	88		161	40	5	5	1	493	502	1 300	1 800	7432BMBP6W8	60,2
165	280	40 .	39	40	113	40	3	3	4	175	205	1 800	2 600	7533BBMB	11,0
190	255 255	33 33	29 29	33 33	110 110	40 40	1,5 1,5	1	4 5	110 176	142 284	1 800 1 500	2 600 2 000	7538BBM 7538BBMDB	4,47 8,94
260	360	48	31		112	25	2,1	1,1	2	248	361	1 300	1 900	7552A1BM	12,4
335	450 450	56 56	56 56		193 193	40 40	3 3	1	1 3	278 451	450 900	1 000 800	1 500 1 200	7567BFS1 7567BFS1DB	25,0 50,0
380	520 520	65 65	65 65		222 222	40 40	4 4	1	1	347 562	610 1 220	850 800	1 200 1 000	7576BFS1 7576BFS1DB	42,4 84,8
410	560 560	70 70	70 70		238 238	40 40	4 4	1	1 3	421 683	788 1 576	850 670	1 200 950	7582BFS1 7582BFS1DB	48,0 96,0
465	635 635	76 76	76 76		269 269	40 40	4 4	4	1 3	464 753	924 1 848	700 670	1 000 950	7593BFS1 7593BFS1DB	67,7 135
560	680	42	42		200	30	2,1	1,1	1	265	523	670	950	75/560A1FP5	30,8
570	700	42	42		169	25	3	3	1	335	693	670	950	75/570AFS1	35,6
750	920 920	54 54	54 54		268 268	30 30	4	4	1 3	458 740	1 110 2 220		700 600	708/750A1MB 708/750A1MBDB	79,5 159


Non-standard single-row angular contact ball bearings

26,1 42,1 12,4 23 26 60 30,1 50 14,5 31,5 35 60 32 48 9 37,5 55,8 12,6	r _{1ş} . min.	load dyn Cr		arassa a			
13 53,6 24 14,4 24 2 24 37 12,5 10,5 14 60 26,1 42,1 12,4 23 26 60 30,1 50 14,5 31,5 35 60 32 48 9 37,5 55,8 12,6			-	grease c	oil		
24 37 12,5 10,5 14 60 26,1 42,1 12,4 23 26 60 30,1 50 14,5 31,5 35 60 32 48 9 37,5 55,8 12,6	mm		kN	n	nin ⁻¹	-	_
26,1 42,1 12,4 23 26 60 30,1 50 14,5 31,5 35 60 32 48 9 37,5 55,8 12,6	0,5	12		3 000 4	000	75Z01	0,260
30 ,1 50 14,5 31,5 35 60 32 48 9 37,5 55,8 12,6		13 5,1	3,9	3 800 5	000	7505V	0,030
32 48 9 37,5 55,8 12,6		13 7	5	3 000 4	000	7605V	0,060
37,5 55,8 12,6		13 16,9	8 (3 000 4	000	7506V	0,105
		14 11,1	5,9	3 000 4	000	K7604TN	0,016
55 90 18,4 12,4 23 26 1 90,5 16,5 14,5 25 71 26 1,1 90,5 16,5 21,5 32 33 26 1,1		14 22,3	11,9	3 000 4	000	K7507TN	0,051
		9 20,1 10 20,1 11 20,5	12.8	3 800 5	000	76Z11A 75Z11A 77Z11A	0,397 0,472 0,550
64 102 24,5 29,5 37 33 20 102 24,5 26,5 37 33 20 102 32,5 29,5 45 33 20		8 30,3 8 30,3 7 33,5	17	3 800 5	000	T-7513AZTN T-7613AZTN T-7813AZTN	0,817 0,900 0,817

Non-standard ball and cage assemblies for bycicles

			D_{w}	balls	•	Weight
			inch	no.	-	kg
13,5	4,2	15	5/32	7	KB180	0,003
15,2	4,8	15,2	3/16	6	KB194	0,004
19,5	6,5	19,5	1/4	7	KB255	0,010
29,5	6,5	29,1	1/4	9	KB345	0,013
27	4	33,2	5/32	11	KB367	0,006
29	3,7	36	5/32	16	KB392	0,007
30,2	6,2	34,5	1/4	11	KB404	0,014
2	15,2 19,5 29,5 27	15,2 4,8 19,5 6,5 29,5 6,5 27 4 29 3,7	15,2 4,8 15,2 19,5 6,5 19,5 29,5 6,5 29,1 27 4 33,2 29 3,7 36	15,2 4,8 15,2 3/16 19,5 6,5 19,5 1/4 19,5 6,5 29,1 1/4 19,5 4 33,2 5/32 19,5 3,7 36 5/32	15,2 4,8 15,2 3/16 6 19,5 6,5 19,5 1/4 7 29,5 6,5 29,1 1/4 9 27 4 33,2 5/32 11 29 3,7 36 5/32 16	15,2 4,8 15,2 3/16 6 KB194 19,5 6,5 19,5 1/4 7 KB255 29,5 6,5 29,1 1/4 9 KB345 27 4 33,2 5/32 11 KB367 29 3,7 36 5/32 16 KB392

Angular contact ball bearings Equivalent designations

Designation	Fig.	Equivalent	Producer	Designation	Fig.	Equivalent
7505V	13			7432BMBP6W8	1	
7605V	13	791105		7533BBMB	4	
7506V	13	791207		7538BBM 7538BBMDB	4 5	466880 2x466880
K7604TN	14			7552A1F2BM	2	
70907CMB K7507TN	1 14	7006907 790307TN	GPZ	7567BFS1 7567BFS1DB	1 3	466952 2x466952
76Z11A 75Z11A 77Z11A	9 10 11	306775	SKF	7576BFS1 7576BFS1DB	1 3	466953 2x466953
7512AZ	2	2889	RIV	7582BF\$1 7582BF\$1DB	1 3	468431 2x468431
T-7513AZTN T-7613AZTN T-7813AZTN	8 8 7	790713 790813		7593BFS1 7593BFS1DB	1 3	307352 2x307352
7414DMB	1	7414	коуо	75/560AF2FP5	1	560752
7414BMBDB	3	2x7414	ROYO	75/570AFS1	1	307140
7522AM	1	926722	GPZ	708/750A1F2MB 708/750A1F2MBDB	1 3	560425 2x560425
7530BBM 7530BMDB	5 4	466895A 2x466895AN	SKF SKF	100/130ATF2MBDB	3	2,000423

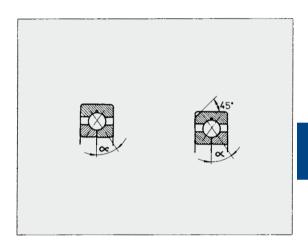
Four-point contact ball bearings

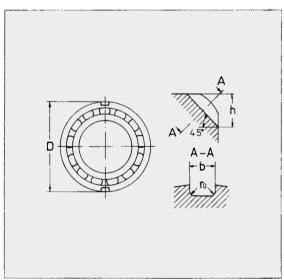
Four-point contact ball bearings are angular contact ball bearings which have a contact angle $\alpha=35^\circ$. The profile of the outer and inner ring raceways consists of two arcs of circle which form an ogive, so that these bearings can accommodate significant axial loads in both directions.

These bearings are also manufactured with three points contact. In this case, one of the raceways is normal (a single circle arc).

They need less axial space than double row angular contact ball bearings.

Four-point contact ball bearings have a two-part inner ring, allowing a large number of balls to be incorporated, thus providing a high load carrying capacity. The bearings are dismountable so that the assembly "outer ring - cage -balls" can be separately mounted from the inner semi-rings.


Four-point contact ball bearings are used to take axial loads and in many cases as thrust bearings radially unloaded in the housing. To prevent rotation of the outer ring in the housing, all bearings with an outside diameter over 160 mm are provided with two locating slots. The dimensions of these locating slots are given in table 1.


Suffix N2 is added at the designation of the bearings with two locating slots.

Locating slots in the outer ring for four-point contact ball bearings

Table 1

Diame	ter	Dimen	sions					
D		series (2 12		series (⊃13		
over	up to	b	h	r	b	h	r	
mm								
170 210 270	170 210 270 400	6,6 8,5 10,5 10,5	8,1 10,1 11,7 12,7	1 2 2 2	8,5 10,5 10,5 10,5		2 2 2 2	

Dimensions

Main dimensions of the four-point contact ball bearings given in tables are in accordance with ISO/R15

Misalignment

Four-point contact ball bearings have only limited ability to accommodate errors in alignment between outer and inner rings. The relationships between the factors governing the permissible values are as complex as for single row deep groove ball bearings.

Tolerances

Four-point contact ball bearings are generally manufactured only to the normal tolerance class.

Bearings tolerances are given on page 37.

Axial clearance

Four-point contact ball bearings are generally manufactured with normal axial clearance. They can also be manufactured with smaller or larger clearances.

The values of axial clearance are given in table 2.

Cages

Four-point contact ball bearings are generally fitted with machined brass cages.

Cage design and some technical data are given in table 3.

Equivalent dynamic radial load

In case of four-point contact ball bearings (series QJ2 and QJ3) with contact angle $\alpha=35^{\circ}$, the following equations are available:

$$\begin{array}{l} P_r = \, F_r \, + \, 0.66 \, F_a, \, kN, & \text{for } F_a/F_r \leq 0.95 \\ P_r = \, 0.6 \, F_r \, + \, 1.07 \, F_a, \, kN, \, \text{for } F_a/F_r < 0.95 \end{array}$$

Satisfactory performance of the balls rolling on the ring raceways of four-point contact ball bearings is only obtained when balls are in contact with the raceways at two points, depending on the load direction, i.e. when the axial load is:

$$F_a > 1,27 F_r$$

In case the four-point contact ball bearings are used as thrust bearings in combination with other radial bearings and they are mounted with radial clearance in the housing, radial load will be:

$$P_r = 1.07 F_a, kN$$

Axial clearance of QJ bearings

Table 2

Diameter d		C2	e group symbol	Normai		СЗ		C4	
over	up to	min.	max.	min.	max.	min	max	min.	max.
mm		μm							
10	18	15	55	45	85	75	125	115	165
18	40	26	66	56	106	96	146	136	186
40	60	36	86	76	126	116	166	156	206
60	80	46	96	86	136	126	176	166	226
80	100	56	106	96	156	136	196	186	246
100	140	66	126	116	176	156	216	206	266
140	180	76	156	136	196	176	246	226	296

Cage design and some technical data

Table 3

Cage	Design bearing	cage	Application	Max. value D _m n oil	grease
Machined brass cage MPA		8	- General application - Bearings series QJ2, QJ3	550×10 ³	450×10 ⁵

Equivalent static radial load

In case of four-point contact ball bearings with a contact angle $\alpha=35^{\circ}$.

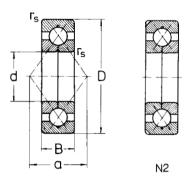
 $P_{0r} = F_r + 0.58 F_a, kN$

Abutment dimensions

For a proper location of bearing rings on the shaft and housing shoulder respectively, shaft (housing) maximum radius $r_{u\ max}$ should be less than bearing minimum mounting chamfer $r_{s\ min}$.

Shoulder height should also be properly sized in case of bearing maximum mounting chamfer.

The maximum values of the fillet radius r_u must be smaller or equal to the minimum corner $r_{s min}$ of the bearing (see table 4).

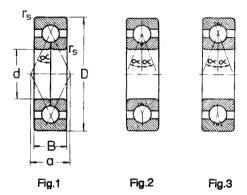

Abutment dimensions

Tabelul 4

r _s min. mm	fu max. 1 1,1 1,5 2 2,1 2,5 3	hu min. Bearing series QJ2, QJ3
1	1	2,8
1,1 1,5		3,5
1,5	1,5	4,5
2	2	4,5 5,5
2,1 3	2,1	6
3	2,5	7
4	3	8,5

Four-point contact ball bearings

Dimen	sions				Basic ra	adial	Speed li	mit	Desig- nation	Weight
d	D	В	r _s min.	a	dyn. Cr	stat. C _{0r}	grease	oil	nunon	
mm					kN		min ⁻¹		_	kg
17	47	14	1	22	23,4	16,2	11 000	16 000	QJ303	0,140
20	52	15	1	25	29,6	20,3	10 000	15 000	QJ304	0,176
30	62	16	1	32	40	29,2	9 000	13 000	QJ206	0,240
	72	19	1,1	36	49,4	40	8 000	11 000	QJ306	0,420
35	72	17	1	37	44	38,4	7 500	10 000	QJ207	0,350
	80	21	1,5	40	59	46,5	7 000	9 500	QJ307	0,570
40	80	18	1,1	42	53	43	6 700	9 000	QJ208	0,450
	90	23	1,5	46	72	58,2	6 300	8 500	QJ308	0,780
45	85	19	1,1	46	58,5	50,5	6 300	8 500	QJ209	0,520
	100	25	1,5	51	93,6	80	5 600	7 500	QJ309	1,04
50	90	20	1,1	49	61,8	54,2	5 600	7 500	QJ210-	0,590
	110	27	2	56	111	95	5 000	6 700	QJ310	1,37
55	100	21	1,5	54	76,5	74	5 300	7 000	QJ211	0,770
	120	29	2	61	127	111	4 500	6 000	QJ311	1,74
60	110	22	1,5	60	92	85,2	4 800	6 300	QJ212	0,990
	130	31	2,1	67	145	126	4 300	5 600	QJ312	2,14
65	120	23	1,5	65	103	99,2	4 300	5 600	QJ213	1,20
	140	33	2,1	72	164	145	4 000	5 300	QJ313	2,71
70	125	24	1,5	68	113	114	4 300	5 600	QJ214	1,30
	150	35	2,1	77	184	165	3 600	4 800	QJ314	3,16
75	130	25	1,5	72	116	117	4 000	5 300	QJ215	1,45
	160	37	2,1	8 2	199	192	3 400	4 500	QJ315N2	3,88
80	140	26	2	77	140	139	3 600	4 800	QJ216	1,85
	170	39	2,1	88	230	229	3 200	4 300	QJ316N2	4,59
85	150	28	2	83	148	159	3 400	4 500	QJ217	2,25
	180	41	3	93	234	240	3 000	4 000	QJ317N2	5,47
90	160 190	30 43	2	88 98	174 267	180 283	3 200 2 800	4 300 3 800	QJ218N2 QJ318N2	
95	170	32	2,1	93	200	200	3 000	4 000	QJ219N2	3,35
	200	45	3	103	285	313	2 600	3 600	QJ319N2	7,45
100	180	34	2,1	98	225	228	2 800	3 800	QJ220N2	4,05
	215	47	3	110	306	341	2 400	3 400	QJ320N2	9,30
110	200 240	38 50	2,1 3	109 123	256 363	294 434	2 400 2 000	3 400 3 000	QJ222N2 QJ322N2	



Four-point contact ball bearings

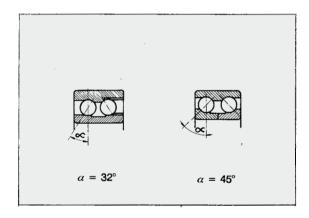
Dimens	sions				Basic ra	adial	Speed li	mit	Desig- nation	Weight
d	D	В	r _s min.	а	dyn. C _r	stat. C _{Of}	grease	oil	Hallon	
mm					kN		min ⁻¹		_	kg
120	215 260	40 55	2,1 3	117 133	283 379	340 532	2 200 1 900	3 200 2 800	QJ224N2 QJ324N2	6,95 16,0
130	230 280	40 58	3 4	126 144	294 425	369 594	1 900 1 800	2 800 2 600	QJ226N2 QJ326N2	7,75 19,5
140	250 300	42 62	3 4	137 154	328 470	436 646	1 800 1 700	2 600 2 400	QJ228N2 QJ328N2	9,85 24,0
150	270 320	45 65	3 4	147 246	337 493	469 743	1 700 1 600	2 400 2 200	QJ230N2 QJ330N2	12,5 29,0
200	360	58	4	196	507	850	1 300	1 800	QJ240N2	28,5
						40.51				

Three-point contact ball bearings

Dime	nsions					Fig.	Basic load	radial	Speed I	limit	Designation	Weight
d	D	В	r _s min.	а	α		dyn. C _r	stat. Cor	grease	oil		
mm					degre	es -	kN		min ⁻¹		-	kg
60	130	31	2,1	34,6	20	1	85	60	4 300	5 600	7312QD	2,00
70	125 125	24 24	1,5 1,5	35,5 28	19 16	2 3	57,5 57,5	41 41	4 300 4 300	5 600 5 600	7514Q 7614Q	1,06 1,06

Equivalent designations

Designation	Fig.	Equivalent designation	
7312QD	1	305816	_
7514Q 7614Q	2 3	9214S	


Angular contact ball bearings

Double row angular contact ball bearings are functionally similar to two single row angular contact ball bearings in DB arrangement and they have to take axial loads acting in both directions and tilting moments.

Double row angular contact ball bearings are narrower than a pair of single row angular contact ball bearings.

Double row angular contact ball bearings can be manufactured in two versions:

- with non-separable inner ring, series 32 and 33, with a contact angle $\alpha = 32^{\circ}$:
- with separable inner ring, series 33D, with a contact angle $\alpha = 45^{\circ}$.

Double row angular contact ball bearings, series 32 and 33 have filling slots on one side. If these bearings have to take axial loads mainly in one direction, they are to be mounted so that axial loads acting upon the shaft should be directed to the filling slots.

Double row angular contact ball bearings series 33D are suitable to accommodate heavy axial loads in both directions.

Dimensions

Main bearing dimensions given in tables are in accordance with ISO/R15

Misalignment

Angular misalignment of the outer ring relative to the inner ring is accommodated by force between the balls and raceway. This leads to a shortening of bearing life.

Tolerances

Double row angular contact ball bearings are generally manufactured to the normal tolerance class.

Bearing tolerances are given on page 37.

Axial clearance

Double row angular contact ball bearings series 32 and 33, with a contact angle $\alpha=32^{\circ}$ are generally manufactured with normal axial clearance. They can also be manufactured with smaller or larger axial clearances.

Double row angular contact ball bearings series 33D, with a contact angle $\alpha=45^{\circ}$ are generally mounted on the shaft with greater tightening than those of series 33. For this reason, the axial clearance is larger.

The values of axial clearance of the double row angular contact ball bearings are given in table 1.

Axial clearance of the double row angular contact ball bearings

Table 1

Outer di	iameter	Series 32 and 33 C2		Normal		СЗ		Series 33D Normai		СЗ	
over	up to	, min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
mm		μm									
_	10	1	11	5	21	12	28	11	28	20	37
10	18	1	12	6	23	13	31	13	31	23	41
18	24	2	14	7	25	16	34	14	32	24	42
24	30	2	15	8	27	18	37	16	35	27	46
30	40	2	16	9	29	21	40	18	38	30	50
40	50	2	18	11	33	23	44	22	44	36	58
50	65	3	22	13	36	26	48	25	48	40	63
65	80	3	24	15	40	30	54	29	54	48	71
80	100	3	26	18	46	35	63	35	63	55	83
100	110	4	30	22	53	42	73	42	73	65	96
		Radial cl	learance = 0	,6 axial clears	ance						

Cages

Double row angular contact ball bearings series 32, 33 are fitted with machined brass cages.

Glass fibre reinforced polyamide 6.6 cages are also used with good results.

Large-sized bearings are fitted with machined brass cages.

Cage design and some technical data are given in table 2.

Equivalent dynamic radial load

For double row angular contact ball bearings series 32 and 33 with a contact angle $\alpha=32^{\circ}$, the following equations are available:

$$P_r = F_r + 0.73 F_a$$
, kN, for $F_a/F_r \le 0.86$
 $P_r = 0.62 F_r + 1.17 F_a$, kN, for $F_a/F_r > 0.86$

For double row angular contact ball bearings series 33D with a contact angle $\alpha=45^\circ$, the following equations are used:

$$\begin{array}{ll} P_r = \, F_r \, + \, 0,47 \, F_a, \, kN, & \text{for } F_a/F_r \leq \, 1,33, \\ P_r = \, 0,54 \, F_r \, + \, 0,81 \, F_a, \, kN, \, \text{for } F_a/F_r \, > \, 1,33 \end{array}$$

Cage design and some technical data

Table 2

Cage	Design Bearing	Cage			Application	Max. value D _{m n} oil	grease
Pressed sheet cage			J.	33	- General application - Bearing series 32, 33	450×10 ³	350×10
Polyamide cage TN				S CON	- General application - Bearing series 32, 33	1000×10 ³	800×10°
Machined brass cage M		A			- General application - Bearings dimensions 3319-3322, 3305D- 3318D	800×10 ³	600×10

For double row angular contact ball bearings with a contact angle $\alpha = 40^{\circ}$, the following equations are used:

$$\begin{array}{ll} P_r = \, F_r \, + \, 0.55 \, F_a, \, kN, & \text{for } F_a/F_r \leq \, 1.14, \\ P_r = \, 0.57 \, F_r \, + \, 0.93 \, F_a, \, kN, \, \text{for } F_a/F_r > \, 1.14. \end{array}$$

Equivalent static radial load

For double row angular contact ball bearings series 32 and 33 with a contact angle $\alpha=32^\circ$:

$$P_{0r} = F_r + 0.63 F_a, kN$$

For double row angular contact ball bearings series 33D with a contact angle $\alpha = 45^{\circ}$:

$$P_{0r} = F_r + 0.46 F_a, kN$$

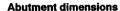
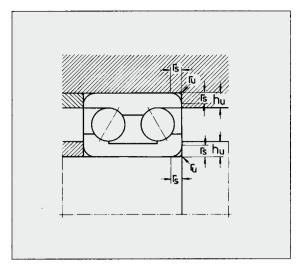
For double row angular contact ball bearings with a contact angle $\alpha = 40^{\circ}$:

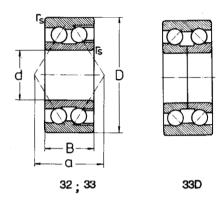
$$P_{0r} = F_r + 0.52 F_a, kN$$

For a proper location of bearing rings on the shaft and housing shoulder respectively, shaft (housing) maximum radius $r_{u \text{ max}}$ should be less than bearing minimum mounting chamfer $r_{s \text{ min}}$

Shoulder height should also be properly sized in case of bearing maximum mounting chamfer.

The values of the connection radii and support shoulder height are given in table 3.

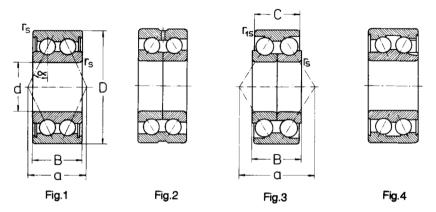




Table 3

r _s min. mm		hu min. Bearing series 32; 33; 33D
0,6	0,6	2,1 2,8
1	1	2,8
1,1	1,1	3,5
1,5	1,5	4,5
2	2	5,5
2,1	2,1	6
2,1 3	2,5	7

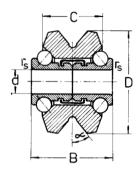
Double-row angular contact ball bearings

Dimen	sions				Basic ra	adial	Speed li	mit	Desig- nation	Weight
d	D	В	r _s min.	а	dyn. Cr	stat. C _{Or}	grease	oil	nano,,	
mm					kN		min ⁻¹		-	kg
10	30	14,3	0,6	19	7,8	3,9	16 000	22 000	3200	0,050
12	32	15,9	0,6	22	10,6	5,1	15 000	20 000	3201	0,060
15	35	15,9	0,6	23	11,8	6,1	13 000	18 000	3202	0,070
	42	19	1	27	16,3	8,7	10 000	15 000	3302	0,130
17	40	17,5	0,6	27	14,6	7,8	10 000	15 000	3203	0,100
	47	22,2	1	31	20,8	10,6	9 500	14 000	3303	0,190
20	47	20,6	1	31	19,6	10,8	9 000	13 000	3204	0,170
	52	22,2	1,1	34	23,2	12,9	8 500	12 000	3304	0,230
	52	22,2	1,1	46	24	11	8 500	12 000	3304D	0,230
25	52	20,6	1	35	21,2	12,7	8 000	11 000	3205	0,190
	62	25,4	1,1	40	29,2	17,3	7 500	10 000	3305	0,370
	62	25,4	1,1	57	30	19	7 500	10 000	3305D	0,380
30	62	23,8	1	41	28,1	18,3	7 000	9 500	3206	0,310
	72	30,2	1,1	47	38	24,5	6 300	8 500	3306	0,580
	72	30,2	1,1	67	41,5	30	6 300	8 500	3306D	0,600
35	72	27	1,1	47	39	25	6 000	8 000	3207	0,480
	80	34,9	1,5	54	51	30	5 600	7 500	3307	0,780
	80	34,9	1,5	76	58	38	5 600	7 500	3307D	0,780
40	80	30,2	1,1	52	48	31,5	5 600	7 500	3208	0,650
	90	36,5	1,5	58	62	39	5 000	6 700	3308	1,05
	90	36,5	1,5	84	70	45	5 000	6 700	3308D	1,15
45	85	30,2	1,1	56	49	32,5	5 000	6 700	3209	0,700
	100	39,7	1,5	64	71	57	4 500	6 000	3309	1,41
	100	39,7	1,5	93	78	51	4 500	6 000	3309D	1,61
50	90	30,2	1,1	59	51	36	4 800	6 300	3210	0,740
	110	44,4	2	73	85	75	4 000	5 300	3310	1,90
	110	44,4	2	102	90	72	4 000	5 300	3310D	2,05
55	100	33,3	1,5	64	54	55	4 300	5 600	3211	1,05
	120	49,2	2	80	98	88	3 600	4 800	3311	2,48
	120	49,2	2	114	104	81,5	3600	4800	3311D	2,68
60	110	36,5	1,5	71	69,5	72	3 800	5 000	3212	1,36
	130	54	2,1	86	114	112	3 400	4 500	3312	3,17
	130	54	2,1	123	116	104	3 400	4 500	3312D	3,42
65	120	38,1	1,5	76	73,5	83	3 600	4 800	3213	1,76
	140	58,7	2,1	94	129	130	3 200	4 300	3313	4,01
	140	58,7	2,1	132	135	117	3 200	4 300	3313D	4,31
70	125	39,7	1,5	81	81,5	91,5	3 200	4 300	3214	1,93
	150	63,5	2,1	101	143	146	2 800	3 800	3314	5,04



Double-row angular contact ball bearings

Dimen	sions				Basic re	dial	Speed li	mit	Desig- nation	Weight
d	D	В	r _s min.	а	dyn. Cr	stat. Cor	grease	oil		
mm					kN		min ⁻¹		-	kg
70	150	63,5	2,1	142	159	130	2 800	3 800	3314D	5,40
75	130 160 160	41,3 68,3 68,3	1,5 2,1 2,1	84 107 140	85 163 179	98 166 150	3 200 2 600 2 600	4 300 3 600 3 600	3215 3315 3315D	2,08 6,16 6,66
80	140 170 170	44,4 68,3 68,3	2 2,1 2,1	91 112 149	95 176 192	110 186 170	2 800 2 400 2 400	3 800 3 400 3 400	3216 3316 3316D	2,64 6,93 7,53
85	150 180 180	49,2 73 73	2 3 3	97 119 155	112 190 208	132 200 193	2 600 2 200 2 200	3 600 3 200 3 200	3217 3317 3317D	3,39 8,30 9,00
90	160 190 190	52,4 73 73	2 3 3	104 125 166	125 216 228	146 240 216	2 400 2 000 2 000	3 400 3 000 3 000	3218 3318 3318D	4,14 9,23 10,0
95	170 200	55,6 77,8	2,1 3	111 133	140 220	163 245	2 200 1 900	3 200 2 800	3219 3319	5,00 11,4
100	180 215	60,3 82,6	2,1 3	118 139	160 240	196 280	2 000 1 800	3 000 2 600	3220 3320	6,10 14,2
110	200 240	69,8 92,1	2,1 3	132 153	190 280	228 400	1 900 1 800	2 800 2 600	3222 3322	8,79 19,0


Non-standard double-row angular contact ball bearings

Dimensions					Fig.	Basic radial		Speed limit		Designation	Weight		
d	D	В	С	r _s min.	α	a		dyn. C _r	stat. Cor	grease	oil		
mm					degr	eemm	_	kN		min ⁻¹		_	kg
20	47	20,6		1	32	30	1	15,8	7,9	9 500	14 000	5204	0,157
35	72 74	29 30	22	2 3	32 32	48 48	3 2	54,6 57,3	35,5 46,1	6 000 6 000	8 000 8 000	3407D 3507DTN	0,310 0,585
36	76	29	2 7	2,3	31	45	3	54	44,5	5 600	7 500	3607DTN	0,575
45	100	39,7		2,3	26	17	4	85,9	75,8	5 600	7 500	5309	1,75
120	190 190	66 66		2	36 32	146 130	2	157 175	207 226	1 900 1 900	2 800 2 800	3424DMP6 3524DMP6	7,11 6,17
180	259,5	`66		2,1	32	171	2	208	318	1 300	1 900	3436DM	10,9
190	269,5	33	66	2,1	32	180	2	273	396	1 200	1 800	3438DMW1	9,66
200	289,5	76		2,1	32	192	2	307	468	1 100	1 600	3440DMW33	15,5
230	329,5	80		2,1	32	214	2	354	592	1 000	1 400	3446DMW33	21,0
250	340	76	70	2,1	40	28 6	3	317	539	600	900	3450DFS1	19,0
260	369,5	46		2,1	32	246	2	395	705	850	1 300	3452DMW33	28,0
280	389,5	92		2,1	32	258	2	416	776	800	1 200	3456DMW33	32,5

Non-standard double-row angular contact ball bearings

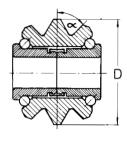


Fig.1

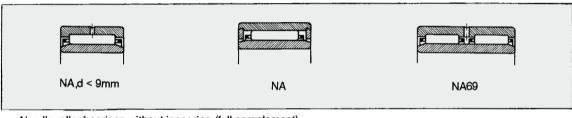
Fig.2

Dimens d	Bions D	В	С	r _s min.	a	Fig.	Basic ra load dyn. Cr	stat. Cor	Desig- nation	Weight
mm							kN		<u> </u>	kg
12	42,945	31	21,5	0,6	33,7	1	12	8,5	790601	0,182
15	54,5	45	33	0,6	49,1	2	13,3	10,8	790202	0,428

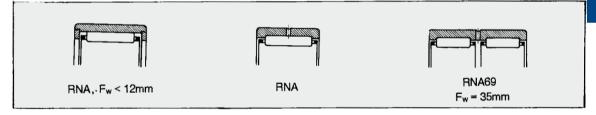
Angular contact ball bearings, double row

Equivalent designations

Designation	Fig.	Equivalent	
5204	1	5204 5204	
3407D 3507DTN	3 2	790107	
3607DTN	3	440190D	
5309	4	5309	
3424DMP6 3524DMP6	2 2	305256D	
3436DM	2	305262D	
3438DMW1	2	305338D	
3440DMW33	2	305263D 509590A	
3446DMW33	2	305264D 506732A	
3450DFS1	3	305611D	
3452DMW33	2	305270D 508731	
3456DMW33	2	305269D	


Needle roller bearings

Needle roller bearings can be considered a version of cylindrical roller bearings. As these small-sized bearings can take over heavy dynamic loads, they provide high


stiffness in bearing units.

Needle roller bearings are manufactured in the following constructive versions:

Needle roller bearings with inner ring

Needle roller bearings without inner ring (full complement)

Suffixes

F2

- dimensions rounded to whole numbers
- В - extended inner ring C2
 - radial clearance smaller than normal
- C3 - radial clearance larger than normal C4
 - radial clearance larger than C3
 - constructive modifications
 - light alloy machined cage
- NA - radial clearance, non-interchangeable bear-
- NR - groove on the inner ring and snap ring
 - tolerance class more accurate than normal
- P6 **P5** - tolerance class more accurate than P6
- P52 - tolerance class P5, radial clearance C2 S0
 - bearing which can be used up to a temperature of +150°C
- TN - polyamide cage

W2

- bearing without cage (full complement)
- needle roller bearing with lubrication holes and grooves in the outer ring

In case of limited space needle roller bearings without inner rings (RNA type) can be used instead of needle roller bearings with inner rings. The shaft must be hardened and ground.

The shaft raceway must have a hardness of 58...65 HRC and a minimum roughness $R_a = 0.2 \mu m$ for normal bearings. In case of less pretentious bearings, $R_a = 0.3 \mu m$ is allowed.

RUL 1V - national standard is the most frequently used material for shafts on which needle roller bearings without inner rings are to be mounted. As for case-hardening steels, 13CrNi35X, 21MoCr12, 15Cr08Mo, 20MoCrNi06 types, minimum thickness of the case-hardened layer can be determined as a function of the rolling

Values of factors fH and foH

Table 1

HRC	60	58	55	50	45	40	35	30	
fH	1,0	0,95	0,80	0,60	0,40	0,30	0,25	0,18	
foH	1,0	1,0	0,95	0,80	0,70	0,55	0,40	0,30	

element diameter, using the equation:

 $t_{min} = (0.07...0.12) D_{w.mm}$

where:

Dw = rolling element diameter, mm

Greater values are valid in case of materials with core low strength and heavy loads.

In case of heat treatment steels (e.g. 41MoCr11) which have been surface hardened and tempered, layer thickness can be calculated using the equation:

 $t_{min} = (0,1...0,15)D_{w, mm}$

where:

D_w = rolling element diameter, mm

Layer thickness after grinding must be of minimum 0,3 mm.

If the hardness of the surface layer is less than 58 HRC, bearing cannot accommodate the initial basic dynamic load $C_{\rm r}$, and basic static load $C_{\rm Or}$, respectively. In this case, basic dynamic load will be decreased by factor $f_{\rm H}$ and basic static load by factor $f_{\rm OH}$, according to the equations:

$$C_{r ef} = f_H C_r, kN$$

 $C_{or ef} = f_{oH} C_{or}, kN$

Factors f_H and f_{OH} are given in table 1.

Dimensions

The dimensions of needle roller bearings are standardized only for dimension series NA48, NA49, NA69, in accordance with ISO 1206

Tolerances

Needle roller bearings with one-piece rings are generally manufactured to the normal tolerance class (P0). At request, they can be manufactured to other tolerance classes (P6 and P5).

The values of tolerances are given in chapter 5 on page 37.

Radial clearance

Needle roller bearings with one-piece rings are generally manufactured with normal radial clearances and the values of clearance are the same with those of the cylindrical roller bearings, according to ISO 5753

At request, these bearings are manufactured with other clearances (C2, C3 or C4).

If needle roller bearings are to be matched in pairs, radial clearance should be the same for both bearings so that loads should be uniformly distributed.

Cage design and some technical data

Table 2

Cage	Design bearing	cage	Application	Max. value D _m n _. oil	grease
Pressed sheet cage			- General application - Moderate speeds	450×10 ³ 2	30×10
Polyamide cage TN			General application - Moderate and high speeds - Bearings with d ≤ 80 mm	850×10 ³ 5	600×10
Machined steel cage			- General application - Moderate speeds	450×10 ³ 2	250×10

Cages

Needle roller bearings with one-piece rings are generally fitted with pressed sheet cages. At special request, when bearings are to be operated at high speeds and/or under heavy loads, machined steel cages are recommended to be used. Glass fibre reinforced polyamide 6.6 cages are also successfully used up to an operating temperature of + 120°C.

Cage design and some technical data are given in table 2.

Fits

Needle roller bearings are generally mounted with interference fits so that rings should not get deformed due to their low section. In case of large-sized bearings, heavy loads and shock loads, bearings are more tightly mounted. When determining the fit, the difference of temperature between the inner ring and the outer ring, respectively, should be considered. The manufacturing tolerance of the shaft should be in the tolerance class 6 (IT6) and of the housing in the tolerance class 7 (IT7). In case of bearings manufactured to more accurate tolerance classes, the manufacturing tolerance of the shaft should be in the tolerance class 5 (IT5) and of the housing in the tolerance class 6 (IT6). These classes are also compulsory for the raceway on shaft. Deviations of form and position should be in accordance with the stipulations

The shaft tolerances are given in table 3. They depend on the radial clearance necessary for needle roller bearings without inner rings which are mounted into the housing, the housing bore being manufactured to the tolerance class K6.

Shaft tolerances for direct bearing unit

Table 3

Shaft diameter d (mm)	Radial clearance Smaller than normal	Normal	Larger than normal
≤ 80	k5	h5	g6
> 80	k5	h5	f6

Bearing minimum radial load

Needle roller bearings must be subjected to a given minimum load especially when being operated at high speeds, so that a proper operation of these bearings can be guaranteed.

The inertia forces which occur in bearing and the friction in the lubricant have a detrimental influence on the rolling conditions in bearing and may cause damaging sliding movements between needle rollers and raceways.

Minimum radial load can be approximately calculated using the equation:

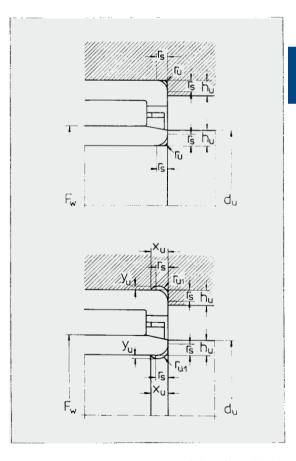
 $F_{r min} = 0.02 C_r$

where:

 $F_{r min} = minimum radial load, kN$ $C_r = basic dynamic load, kN$

Dynamic and static equivalent load

Needle roller bearings can accommodate only radial loads which can be calculated using the equations:


$$P_r = F_r, kN$$

 $P_{0r} = F_{0r}, kN$

Abutment dimensions

For a proper location of bearing rings on the shaft and housing shoulder respectively, shaft (housing) maximum radius $r_{\text{u max}}$ should be less than bearing minimum mounting chamfer $r_{\text{s min}}$.

Shoulder height should also be properly sized in case of bearing maximum mounting chamfer.

The values of the connection radius (r_u) and support shoulder height (h_u) , depending on the mounting chamfer, are given in table 4 and are in accordance with national standard

The diameter d_u should not exceed the values given in table 5, so that the shaft can be mounted and remounted. The dimension F_w is given in bearing tables.

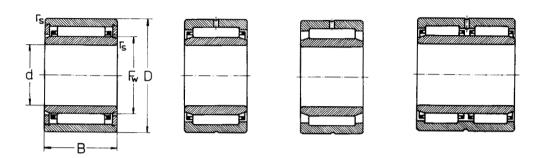
Abutment dimensions

Shoulder diameter

Table 5

Table 4

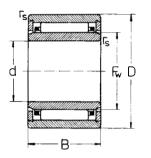
rs min.	ru max.	Yu	ru1	Xu	hu min.
nm		· ·			
0,15	0,15				0,6
0,3	0,3				1
0,6	0,6				2
1	1	0,2	1,3	2	2 2,5
1,1	1	0,3	2	3	3,25
1,5	1,5	0,4	2	3,2	4
2	2	0,5	2,5	4	5
2,1	2,1	0,5	3	4,7	5,5
3	2,5	0,5	3,5	5,3	6
4	3	0,6	4	5,5	7

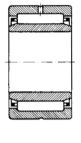

F _W over	up to	du max.
mm		
	20 55	F _W -0,3 F _W -0.5
55 100	100 250	F _W -0,3 F _W -0,5 F _W -0,7 F _W -1 F _W -1,5
255	_	F _W 1,5

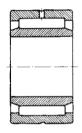
NA69

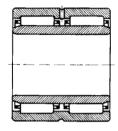
Needle roller bearings

NA,d ≤ 9mm


NA V


NA


Dime	nsions				Basic (radial	Speed I	imit	Designation	Weight
d	D	В	r _s min.	Fw	dyn. Cr	stat. Cor	grease	oil		
mm					kN		min ⁻¹			kg
5	15	12	0,3	8	3,7	3,95	19 000	32 000	NA051512	0,013
	15	16	0,3	8	4,95	5,65	19 000	32 000	NA051516	0,016
6	16	12	0,3	9	4,3	4,8	18 000	30 000	NA061612	0,014
	16	16	0,3	9	5,6	6,9	18 000	30 000	NA061616	0,018
7	17	12	0,3	10	4,5	5,35	17 000	28 000	NA071712	0,015
	17	16	0,3	10	5,8	6,5	17 000	28 000	NA071716	0,020
9	19	12	0,3	12	4,65	5,8	16 000	26 000	NA091912	0,018
	19	16	0,3	12	6,15	8,1	16 000	26 000	NA091916	0,023
10	22	13	0,3	14	8,25	9,1	15 000	24 000	NA4900	0,024
	22	16	0,3	14	9,8	11,3	15 000	24 000	NA102216	0,031
	22	20	0,3	14	11,8	15,4	15 000	24 000	NA102220	0,038
12	24	13	0,3	16	9,1	10,6	15 000	24 000	NA4901	0,027
	24	22	0,3	16	14,8	20,2	15 000	24 000	NA6901	0,048
15	28	13	0,3	20	10,4	13,2	13 000	20 000	NA4902	0,035
	28	23	0,3	20	16,8	24,5	13 000	20 000	NA6902	0,065
17	30	13	0,3	22	10,7	13,9	11 000	18 000	NA4903	0,039
	30	23	0,3	22	18,2	27,8	11 000	18 000	NA6903	0,074
20	37	17	0,3	25	20,6	24,4	9 500	16 000	NA4904	0,077
	37	30	0,3	25	33	47,6	9 500	16 000	NA6904	0,143
25	42	17	0,3	30	22,2	28,3	8 000	13 000	NA4905	0,096
	42	17	0,3	30	30	42,8	3 000	6 000	NA4905V	0,100
	42	30	0,3	30	40,1	60,1	8 000	13 000	NA6905	0,170
30	45	20	0,3	35	24,2	38,5	7 000	11 000	NA304520	0,117
	47	17	0,3	35	23,7	32,1	7 000	11 000	NA4906	0,107
	47	30	0,3	35	43,1	69,3	7 000	11 000	NA6906	0,202
35	55	20	0,6	42	29,8	45,5	6 300	9 500	NA4907	0,174
	55	36	0,6	42	52,7	95	6 300	9 500	NA6907	0,330
40	55	30	0,3	45	40,2	86,9	6 000	9 000	NA405530	0,221
	62	22	0,6	48	38,7	60,9	5 600	8 500	NA4908	0,239
	62	22	0,6	48	55	97,1	2 000	4 000	NA4908V	0,266
	62	40	0,6	48	63,8	116	5 600	8 500	NA6908	0,450
	65	22	1	50	40,7	66,9	5 600	8 500	NA406522	0,290
45	62	25	0,6	50	36,3	76	5 300	8 000	NA456225	0,235
	62	35	0,6	50	49,4	114	5 300	8 000	NA456235	0,330
	68	22	0,6	52	46,4	73,9	5 000	7 500	NA4909	0,285
	68	40	0,6	52	64,5	123	5 000	7 500	NA6909	0,515
50	68	25	0,6	55	38,5	82,2	5 000	7 500	NA506825TN	0,268
	72	22	0,6	58	45	73,5	4 800	7 000	NA4910	0,280



Needle roller bearings

		NA,d ≨ 9	mm		1	I A		NA V	,	NA69
Dime:	nsions D	В	r _{s.}	Fw	Basic (load dyn. C _r	radial stat. Cor	Speed I	l imit oil	Designation	Weight
mm			min.		kN		min ⁻¹		_	kg
50	72	40	0,6	58	67,3	136	4 800	7 000	NA6910	0,545
55	72	25	0,6	60	40,2	87	4 500	6 700	NA557225TN	0,283
	72	35	0,6	60	55,7	130	4 500	6 700	NA557235	0,380
	80	25	1	63	59,3	101	4 500	6 700	NA4911	0,423
55	80 80	25 45	1	63 63	80,3 83,8	151 173	1 500 4 500	3 000 6 700	NA4911V NA6911	0,448 0,795
60	85	25	1	68	62	109	4 000	6 000	NA4912	0,454
	85	25	1	68	83,4	163	1 400	2 800	NA4912V	0,480
	85	45	1	68	89,1	175	4 000	6 000	NA6912	0,836
65	90 90	25 45	1	72 72	58,3 91,3	110 193	3 800 3 800	5 600 5 600	NA4913 NA6913	0,472 0,881
70	95 100 100 100	25 30 30 54	1 1 1	80 80 80 80	53,4 76,5 103 125	115 148 231 254	3 400 3 400 1 200 3 400	5 000 5 000 2 700 5 000	NA709525 NA4914TN NA4914V NA6914	0,538 0,725 0,774 1,39
75	105 105	30 54	1	85 85	80,6 127	158 270	3 200 3 200	4 800 4 800	NA4915 NA6915	0,796 1,51
80	110 110	30 54	1	90 90	84,9 144	169 316	3 000 3 000	4 500 4 500	NA4916 NA6916	0,870 1,48
85	115	26	1	95	74,3	137	2 800	4300	NA85/26	0,830
	120	35	1,1	100	98,8	222	2 600	4 000	NA4917	1,28
	120	63	1,1	100	143	378	2 600	4 000	NA6917	2,33
	130	45	1,1	104	121	408	900	1 800	NA4617V	2,57
90	125	35	1,1	105	110	222	2 400	3 800	NA4918	1,34
	125	63	1,1	105	144	400	2 400	3 800	NA6918	2,47
95	130	35	1,1	110	105	244	2 200	3 600	NA4919	1,39
	130	63	1,1	110	149	411	2 200	3 600	NA6919	2,63
100	130	30	1,1	110	99,6	210	2 200	3 600	NA100/30	1,00
	140	40	1,1	115	124	267	2 200	3 600	NA4920	1,93
110	140	30	1	120	102	222	2 000	3 400	NA4822	1,15
	150	40	1,1	125	127	283	2 000	3 400	NA4922	2,09
120	150	30	1	130	86,8	22 8	1 800	3 000	NA4824	1,23
	165	45	1,1	135	170	385	1 800	3 000	NA4924	2,95
130	165	35	1,1	145	122	316	1 700	2 800	NA4826	1,90
	180	50	1,5	150	188	421	1 700	2 800	NA4926	3,98
140	175	35	1,1	155	128	323	1 600	2 600	NA4828	1,99
	180	32	1,5	155	116	258	1 600	2 600	NA140/32	2,05
	190	50	1,5	160	190	484	1 600	2 600	NA4928	4,32

NA4830

2,85

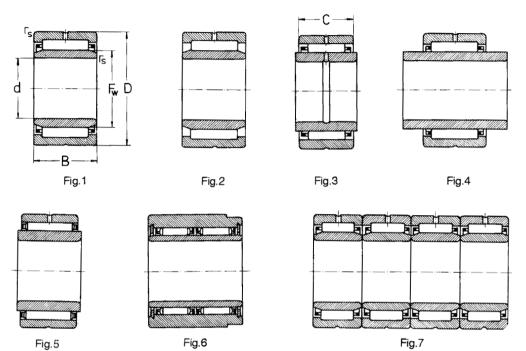
190

40

1,1

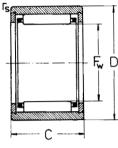
165

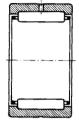
150

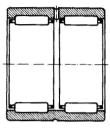

386

1 500

2 400


Non-standard needle roller bearings




Dimen	sions D	В	С	Basic radial load load dyn. stat. C r _s F _w C _r C _{0r} min.		stat.	Speed grease	Speed limit Designation grease oil			Weight		
mm						kN		min ⁻¹		_		kg	
10	33	24,5	24,5	1	12,3	27,3	43,3	15 000	24 000	492100V	4	0,145	
28,575	47,625	26,654	25,4	1	34,925	36,1	55,2	7 000	11 000	NA294825ABW2	3	0,191	
31,75	53,975	32	31,75	1,5	39,687	49,3	85,8	6 300	9 500	NA325432ABW2	3	0,318	
35	55	36	36	1	41,51	46,1	97,8	6 300	9500	NA6907A	6	0,330	
38,1	60,325	32	31,75	1,5	46,037	53,1	98,8	5 600	8 500	NA386032ABW2	3	0,372	
40	65 72	22 40	18 22	1,1 0,6	50 58	30,4 45	54,5 73,5	5 600 4 000	8 500 7 000	NAO406518BLC4 NA4910B	5 4	0,268 0,393	
41,275	63,5 65,088	32 32	31,75 31,75	1,5 1	49,7 50,8	79,8 56,3	174 106	4 800 5 600	8 000 8 500	NA416332ABVW2 490110	3 4	0,406 0,401	
44,45	76,2	44,7	44,45	1,5	57,15	97,3	185	4 500	7 500	NA447644ABW2	3	0,899	
45	72	40	40	1	52	56,8	138	4 500	7 500	NA69/45F2	6	0,698	
55,562	88,9	44,7	44,45	2	69,85	106	220	4 800	6 000	NA568944ABW2	3	1,14	
60	100	38	38	1	78,3	92,9	303	3 400	5 000	NA6010038VNA	1	1,44	
65	105	38	38	1	83,1	104	319	3 400	5 000	NA6510538VNA	2	1,49	
70	95	25	25	1,5	80	49,5	108	3 400	5 000	NA709525	1	0,545	
114,3	177,8	63,5	63,5	4	139,7	283	596	1 700	2 800	NA114/63A	3	6,25	
120	165	45	45	1,1	135	515	1 601	1 800	3 000	4xNA4924	7	11,8	
150	215	72	72	1,5	179,3	372	1 450	1 800	3 000	NA150/72VNAF2	2	10,0	

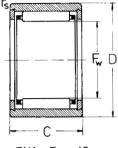
Needle roller bearings without inner ring

RNA, $F_w \le 12mm$

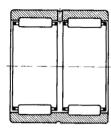
RNA

RNA69

Dimer	enoie			Basic r	adial	Speed I	mit	Designation	Weight
F _w	D	С	rs min.	dyn. C _r	stat. Cor	grease	oil		
mm				kN		min ⁻¹		_	kg
8	15	12	0,3	3,7	3,95	19 000	32 000	RNA081512	0,008
	15	16	0,3	4,95	5,65	19 000	32 000	RNA081516	0,012
9	16	12	0,3	4,3	4,8	18 000	30 000	RNA091612	0,010
	16	16	0,3	5,6	6,9	18 000	30 000	RNA091616	0,013
10	17	12	0,3	4,5	5,35	17 000	28 000	RNA101712	0,011
	17	16	0,3	5,8	6,5	17 000	28 000	RNA101716	0,014
12	18	15	0,3	5,6	7,75	16 000	26 000	RNA121815TN	0,012
	19	12	0,3	4,65	5,8	16 000	26 000	RNA121912	0,013
	19	16	0,3	6,15	8,1	16 000	26 000	RNA121916	0,017
	22	12	0,3	5,3	6,65	16 000	26 000	RNA122212	0,021
14	22	13	0,3	8,25	9,1	15 000	24 000	RNA4900	0,017
	22	16	0,3	9,8	11,3	15 000	24 000	RNA142216	0,021
	22	20	0,3	11,8	15,4	15 000	24 000	RNA142220	0,028
16	24	13	0,3	9,1	10,6	15 000	24 000	RNA4901	0,018
	24	22	0,3	14,8	20,2	15 000	24 000	RNA6901	0,032
18	28	15	0,3	9,5	11,9	14 000	22 000	RNA182815	0,036
20	28	13	0,3	10,4	13,2	13 000	20 000	RNA4902	0,022
	28	23	0,3	16,8	24,5	13 000	20 000	RNA6902	0,040
22	30	13	0,3	10,7	13,9	11 000	18 000	RNA4903	0,023
	30	23	0,3	18,2	27,8	11 000	18 000	RNA6903	0,043
25	37	17	0,3	20	24,4	9 500	16 000	RNA4904	0,053
	37	30	0,3	33	47,6	9 500	16 000	RNA6904	0,101
30	40	20	0,3	21	33	8 000	13 000	RNA304020	0,065
	42	17	0,3	22,2	28,3	8 000	13 000	RNA4905	0,068
	42	30	0,3	40,1	60,1	8 000	13 000	RNA6905	0,155
35	45	20	0,3	24,2	38,5	7 000	11 000	RNA354520	0,074
	47	17	0,3	23,7	32,1	7 000	11 000	RNA4906	0,140
	47	30	0,3	43,1	49,3	7 000	11 000	RNA6906	0,131
38	48	20	0,3	24,3	41,4	7 000	11 000	RNA384820	0,080
42	55	20	0,6	29,8	45 ,5	6 300	9 500	RNA4907	0,10 9
	55	36	0,6	52,7	95	6 300	9 500	RNA6907	0,214
45	55	30	0,3	40,2	86,9	6 000	9 000	RNA455530	0,137
48	62	22	0,6	38,7	60,9	5 600	8 500	RNA4908	0,147
	62	40	0,6	63,8	116	5 600	8 500	RNA6908	0,266
50	62	22	1	35,5	60,3	5 300	8 000	RNA506222	0,153
	62	25	0,6	36,3	76	5 300	8 000	RNA506225	0,157

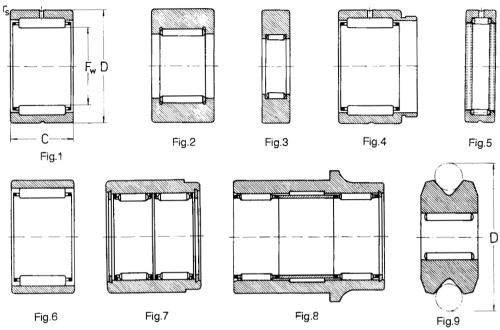


Needle roller bearings without inner ring


Dimen	sions			Basic r	adial	Speed li	mit	Designation	Weight
Fw	D	С	r _s min.	dyn. Cr	stat. Cor	grease	oil		
mm				kN		min ⁻¹		_	kg
50	62	35	0,6	49,4	114	5 300	8 000	RNA506235	0,209
52	68 68	22 40	0,6 0,6	46,4 64,5	73,9 123	5 000 5 000	7 500 7 500	RNA4909 RNA6909	0,197 0,283
55	68	25	0,6	38,5	82,2	5 000	7 500	RNA556825TN	0,181
58	72 72	22 40	0,6 0,6	45 67,3	73,5 136	4 800 4 800	7 000 7 000	RNA4910 RNA6910	0,167 0,335
60	72 72	25 35	0,6 0,6	40,2 55,7	87 130	4 500 4 500	6 700 6 700	RNA607225TN RNA607235	0,160 0,22 4
63	80 80	25 45	1 1	59,3 83,8	101 173	4 500 4 500	6 700 6 700	RNA4911 RNA6911	0,278 0,477
68	85 85	25 45	1	62 89,1	109 175	4 000 4 000	6 000 6 000	RNA4912 RNA6912	0,296 0,493
72	90 90	25 45	1	58,3 91,3	110 193	3 800 3 800	5 600 5 600	RNA4913 RNA6913	0,318 0,545
80	95 100 100	25 30 54	1 1	53,4 76,5 125	115 148 254	3 400 3 400 3 400	5 000 5 000 5 000	RNA809525 RNA4914TN RNA6914	0,312 0,485 0,545
85	105 105	30 54	1	80,6 127	158 270	3 200 3 200	4 800 4 800	RNA4915 RNA6915	0,504 0,965
90	110 110	30 54	1	84,9 144	169 316	3 000 3 000	4 500 4 500	RNA4916 RNA6916	0,520 0,973
95	115	26	1	74,3	137	2 800	4 300	RNA95/26	0,523
100	120 120	35 63	1,1 1,1	98,8 143	222 378	2 600 2 600	4 000 4 000	RNA4917 RNA6917	0,672 1,24
105	125 125	35 63	1,1 1,1	110 144	222 400	2 400 2 400	3 800 3 800	RNA4918 RNA6918	0,712 1,36
110	130 130 130	30 35 63	1,1 1,1 1,1	99,6 105 149	210 244 411	2 200 2 200 2 200	3 600 3 600 3 600	RNA110/30 RNA4919 RNA6919	0,626 0,729 1,48
115	140	40	1,1	124	267	2 200	3 600	RNA4920	1,17
120	140	30	1	102	222	2 000	3 400	RNA4822	0,729
125	150	40	1,1	127	283	2 000	3 400	RNA4922	1,25
130	150	30	1	86,8	228	1 800	3 000	RNA4824	0,730

Needle roller bearings without inner ring

RNA, F_w ≤ 12mm


RNA

RNA69

Dimen	sions			Basic r load	adial	Speed li	mit	Designation	Weight	
F _w	D	С	r _s min.	dyn. C _f	stat. C _{Or}	grease	oil			
mm				kN		min ⁻¹		_	kg	
135	165	45	1,1	170	385	1 800	3 000	RNA4924	1,93	
145	165	35	1,1	122	316	1 700	2 800	RNA4826	1,02	
150	180	50	1,5	188	421	1 700	2 800	RNA4926	2,25	
155	175 180	35 32	1,1 1,5	128 116	323 258	1 600 1 600	2 600 2 600	RNA4828 RNA155/32	1,21 1,22	
160	190	50	1,5	190	484	1 600	2 600	RNA4928	2,50	
165	190	40	1,1	150	386	1 500	2 400	RNA4830	1,68	
					٠					

Non-standard needle roller bearings without inner ring

Dimens	ions			Basic I	radial	Speed li	mit	Fig.	Designation	Weight
d	D	С	r _s min.	dyn. Cr	stat. Cor	grease	oil			
mm				kN		min ⁻¹		_		kg
12,5	57,81	23		27	35	2 800	5 600	9	490401	0,199
19,05	31,75	25,4	1	27,7	33,4	13 000	20 000	1	RNA193225A	0,078
22	40 40	20 20	0,6 0,6	18,6 27,2	28,1 46,8	9 000 4 000	19 000 8 000	1 2	RNA224020 RNA224020V	0,127 0,127
25	33	16	0,3	11,5	18,5	9 000	16 000	1	RNA253316	0,039
25,4	38,1	19,05	0,6	24,5	30,6	9 000	16 000	1	RNA253819A	0,070
26,008	46	47,5	1,5	15,2	26,6	9 000	16 000	8	RNA264647A	0,274
27	39,688	38,48	0,5	39,5	57,5	9 000	16 000	4	RNA274038A	0,133
28	60	12	1	16,3	26,1	3 400	7 000	3	RNA286012V	0,200
28,58	41,28	31,75	1	43,5	66,1	9 000	14 000	1	RNA294132A	0,133
31,75	44,45	31,75	1	43,2	67,5	8 000	13 000	1	RNA324432A	0,140
36,51	49,213	25,4	1,5	37,3	58,4	7 000	11 000	1	RNA364925A	0,125
41,275	65,088	31,75	1	82,1	106	6 000	9 000	1	RNA416532A	0,378
41,51	55	36	0,6	46,1	97,8	6 300	9 500	7	RNA6907AP5	0,269
47,625	61,912	31,75	1,5	66	114	6 000	9 000	1	RNA486232A	0,236
69,85	88,9	38,1	2	96,7	196	4 000	6 000	1	RNA708938A	0,557
78,3	95	20	2	41,7	108	1 200	2 500	5	RNA789520AV	0,290
90	105	26	1,5	59,6	143	3 200	4 800	6	RNAO 90/26	0.383

Drawn cup needle roller bearings

Drawn cup needle roller bearings consist of a single row of needle rollers with or without cage and a low cross section outer sleeve of heat treated steel which is the outer ring. Drawn cup needle roller bearings can be open on both ends or only on one end. Those with one closed end are intended to be mounted on shaft ends.

Various designs of drawn cup needle roller bearings are given below:

Suffixes

A - dimensions rounded to whole numbers

RS - sealed bearing
TN - polyamide cage

- bearing without cage

Drawn cup needle roller bearings are manufactured both with cage and without cage. In case of those without cage, suffix "V" is added to the basic designation. Drawn cup needle roller bearings are also manufactured with seal on one end (RS) or on both ends (2RS).

Drawn cup needle roller bearings should be mounted into the housing bore with an interference fit. For this reason, axial location is not necessary. In most cases, they are mounted without inner ring. Inner rings are used only when the shaft is not hardened and ground.

The specifications regarding shaft raceway for needle roller bearings without inner rings are also available for drawn cup needle roller bearings mounted directly on the shaft.

Dimensions

The dimensions of drawn cup needle roller bearings with open or closed end are in accordance with ISO 3245 and national standard respectively. Drawn cup needle roller bearings of non-standardized designs and dimensions can also be manufactured.

Tolerances

The tolerances of drawn cup needle roller bearings are not internationally standardized. They have thin walls and they assume the housing bore form after being pressed. The needle rollers inscribed circle diameter F_w , should be measured after the drawn cup needle roller bearing with D outside diameter had been pressed in a gauge ring. Gauge ring bore diameter D_0 should have values corresponding to the minimum values of the tolerance class N6. These values are given in table 1.

Gauge ring dimensions

Table 1

Do ±0.003	D	Do +0.003	D	Do +0.003	D	Do ±0,003
						20,000
				34,972		49,972
8,984	21	20,976	37	36,972	52	51,967
9,984	22		38		55	54,967
10,980	23		39			57,967
11,980	24	23,976	40	39,972	63	62,967
12,980	25	24,976	42	41.972	68	67,967
	26		45			72,967
						7 7,976
						.,,370
	** 0,003 7,984 8,984 9,984 10,980	±0,003 7,984 20 8,984 21 9,984 22 10,980 23 11,980 24 12,980 25 13,980 26 14,980 28 15,980 30	±0,003 ±0,003 ±0,003 7,984 20 19,976 8,984 21 20,976 9,984 22 21,976 10,980 23 22,976 11,980 24 23,976 12,980 25 24,976 13,980 26 25,976 14,980 28 27,976 15,980 30 29,976	±0,003 ±0,003 7,984 20 19,976 35 8,984 21 20,976 37 9,984 22 21,976 38 10,980 23 22,976 39 11,980 24 23,976 40 12,980 25 24,976 42 13,980 26 25,976 45 14,980 28 27,976 47 15,980 30 29,976 48	±0,003 ±0,003 ±0,003 ±0,003 ±0,003 7,984 20 19,976 35 34,972 8,984 21 20,976 37 36,972 9,984 22 21,976 38 37,972 10,980 23 22,976 39 38,972 11,980 24 23,976 40 39,972 12,980 25 24,976 42 41,972 13,980 26 25,976 45 44,972 14,980 28 27,976 47 46,972 15,980 30 29,976 48 47,972	±0,003 ±0,003 ±0,003 ±0,003 7,984 20 19,976 35 34,972 50 8,984 21 20,976 37 36,972 52 9,984 22 21,976 38 37,972 55 10,980 23 22,976 39 38,972 58 11,980 24 23,976 40 39,972 63 12,980 25 24,976 42 41,972 68 13,980 26 25,976 45 44,972 73 14,980 28 27,976 47 46,972 78 15,980 30 29,976 48 47,972

Gauge inner ring thickness should be of minimum 20 mm.

The deviation of diameter Fw of the needle roller inscribed circle for drawn cup needle roller bearings pressed into the gauge ring should correspond to the values given in table 2.

			lable 2
F _W over	up to	Δ Fw high	low
mm		μm	
3	6	+28	+10
6	10	+31	+ 13
10	18	+34	+16
18	30	+41	+20
30	50	+50	+25
50	70	+60	+30

Tolerances of diameter Fw

is determined by the tolerances of housing bore and shaft. Tolerances of the housing bore and shaft are given in table 3, for various housing materials.

clearance, corresponding to the tolerance class F8, which

Tolerances of the housing bore and shaft

Table 3

Housing material	Tolerances of: Housing bore	Shaft without inner ring	Shaft with inner ring
Steel or cast iron	N6 (N7)	h5 (h6)	k5 (j6)
Light metals	R6 (R7)	h5 (h6)	k5 (j6)

Cages

Drawn cup needle roller bearings are generally fitted with pressed sheet cages. Glass fibre reinforced polyamide 6.6 cages are also suitable up to +120°C.

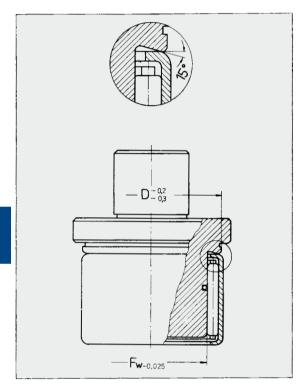
Cage design and some technical data are given in table 4.

Radial clearance and mounting tolerances

Drawn cup needle roller bearings have normal radial

Cage design and some technical data

Table 4


Cage	Design Bearing	Cage	Application	Max. valu D _m n oil	e grease
Pressed sheet cage			- General application - Moderate speeds	300×10 ³	150×10°
Polyamide cage TN			- General application - Moderate and high speeds	350×10 ³	200×10

Mounting instructions

Drawn cup needle roller bearings should be pressed in their seating by means of a special mandrel, as shown in the figure bellow.

When pressing a drawn cup needle roller bearing it should be considered that only one rib, i.e. the marked one has been heat treated. The bearing should be pressed on this rib by means of the mandrel shown in figure bellow.

Paired mounting

Drawn cup needle roller bearings which are to be paired mounted should have the same needle rollers inscribed circle diameter F_w (the same sort), so that an uniform load distribution on both bearings should be achieved.

Bearing minimum radial load

Needle roller bearings must be subjected to a given minimum load especially when being operated at high speeds, so that a proper operation of these bearings can be guaranteed.

The inertia forces which occur in bearing and the friction in the lubricant have a detrimental influence on the rolling conditions in bearing and may cause damaging sliding movements between needle rollers and raceways.

Minimum radial load depends on the bearing size, speed and lubricant viscosity at the operating temperature. It can be approximately calculated using the equation:

$$F_{r min} = 0.01 C_r, kN$$

where:

Fr min = minimum radial load, kN

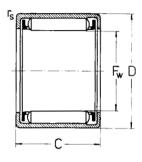
C_r = basic dynamic load, kN

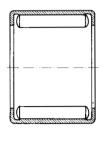
Dynamic and static equivalent load

Considering that drawn cup needle roller bearings with open or closed ends can take only radial loads, these loads can be calculated using the equations:

$$P_r = F_r, kN,$$

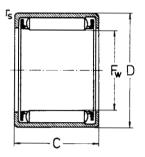
 $P_{0r} = F_r, kN$


For these bearings, the recommendations on page 29, concerning static safety factor s_0 , are not valids, and it must be considered $s_0 > 3$.


Abutment dimension

Drawn cup needle roller bearings with and without bottom should be mounted with an interference fit. Because of their low cross section, they will assume the housing bore form. The fits are to be chosen so that bearing axial location to be not necessary.

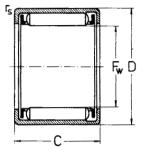
Drawn cup needle roller bearings

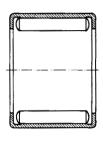

RHNA

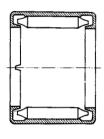
RHNA V

Dimer	sions			Basic r load	adial	Speed li	mit	Designation	Weight
Fw	D	С	r _s min.	dyn. Cr	stat. Cor	grease	oil		
mm				kN		min ⁻¹		_	kg
3	6,5	6	0,3	1,2	0,83	38 000	56 000	RHNA030606TN	0,001
4	8	8	0,3	1,7	1,25	30 000	45 000	RHNA040808TN	0,001
5	9	9	0,4	2,35	1,4	24 000	38 000	RHNA050909TN	0,002
6	10	9	0,4	2,7	2,65	22 000	34 000	RHNA061009TN	0,003
7	11	9	0,4	3	2,9	19 000	30 000	RHNA071109TN	0,003
8	12 12	10 10	0,4 0,4	3,8 3,8	4,35 4,35	17 000 17 000	26 000 26 000	RHNA081210 RHNA081210TN	0,003 0,003
9	13 13	10 12	0,4 0,4	4,1 5,15	4,6 6,3	16 000 16 000	24 000 24 000	RHNA091310 RHNA091312	0,004 0,004
10	14 16	10 12	0,4 0,4	4,4 10,3	5,6 13,2	14 000 7 000	22 000 11 000	RHNA101410 RHNA101612V	0,004 0,005
12	16 17	10 12	0,4 0,4	4,95 5,35	6,9 6,7	12 000 12 000	19 000 18 000	RHNA121610 RHNA121712	0,005 0,009
14	20	12	8,0	6,55	7,9	10 000	15 000	RHNA142012	0,011
15	20	12	8,0	5,85	9,05	9 500	15 000	RHNA152012	0,008
16	22	12	8,0	4,55	10,4	9 000	14 000	RHNA162212	0,011
17	23 23 23 23	12 14 18 18	0,8 0,8 0,8 0,8	7,5 9,1 12,1 11,8	10 12,8 18,5 19,2	8 500 8 500 8 500 8 500	13 000 13 000 13 000 13 000	RHNA172312 RHNA172314 RHNA172316 RHNA172318	0,012 0,014 0,016 0,018
18	24 24 24	12 14 16	0,8 0,8 0,8	7,65 9,6 10,8	11,1 14,1 17,3	8 000 8 000 8 000	12 000 12 000 12 000	RHNA182412 RHNA182414 RHNA182416A*	0,012 0,014 0,018
20	26 26	14 20	8,0 8,0	9 15,7	13,4 27,1	7 500 7 500	11 000 11 000	RHNA202614RS RHNA202620	0,014 0,026
22	28 28 28	14 14 16	0,8 0,8 0,8	10,7 19,3 12,5	18,3 36,1 22,3	6 700 3 500 6 700	10 000 5 600 10 000	RHNA222814 RHNA222814AV* RHNA222816	0,019 0,021 0,022
25	32 32 32 32 32 33	16 20 22 26 26 26 20	0,8 0,8 0,8 0,8 0,8 0,8	14,1 18,3 20,9 24,5 38,6 20,2	23 30,8 38,5 47,4 81,7 32,5	6 000 6 000 6 000 6 000 3 200 5 600	9 000 9 000 9 000 9 000 4 800 9 000	RHNA253216 RHNA253220 RHNA253222 RHNA253226 RHNA253226V RHNA253320A*	0,026 0,032 0,040 0,048 0,058 0,039

Drawn cup needle roller bearings

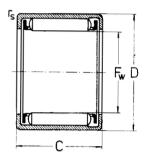

RHNA

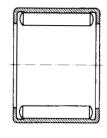

RHNA V

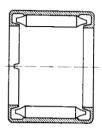

Dimer	nsions			Basic r	adial	Speed (i	imit	Designation	Weight
Fw	D	С	r _s min.	dyn. Cr	stat. C _{Or}	grease	oil		
mm				kN		min ⁻¹		-	kg
30	37	12	0,8	10,3	15,6	5 000	7 500	RHNA303712	0,022
30	37 37 38 38	12 20 24 25	0,8 0,8 0,8 0,8	20,3 20,2 25,5 26	37,9 39,2 46,3 47,6	2 600 5 000 5 000 5 000	4 000 7 500 7 500 7 500	RHNA303712V RHNA303720 RHNA303824 RHNA303825	0,027 0,041 0,057 0,058
35	42 43	20 25	8,0 8,0	23,7 29,6	47,2 59	4 300 4 300	6 700 6 700	RHNA354220 RHNA354325	0,046 0,074
37	44	22	8,0	20,6	42,8	4 000	6 300	RHNA374422RS	0,049
40	47	20	0,8	21,4	46,1	3 800	6 000	RHNA404720	0,053
45	52 55	20 38	8,0 8,0	25 59,1	58,8 127	3 400 3 400	5 300 5 000	RHNA455220 RHNA455538	0,062 0,162
50	60	38	0,8	61,1	137	3 000	4 800	RHNA506038	0,176

Non-standard drawn cup needle roller bearings

RHNA

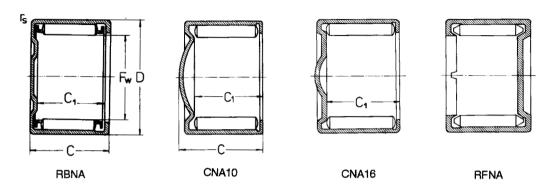

RHNA V


RTNA,94


Dimensi	ions			Basic re	adial	Speed li	mit	Designation	Weight	
Fw	D	С	r _s min.	dyn. C _r	stat. Cor	grease	oil			
mm				kN		min ⁻¹			kg	
7,94	12,7	11,13	1	7,2	9,5	8 500	13 000	RHNA081311AV	0,005	
9,53	14,288 14,288	12,7 15,88	1	9 11,5	13,5 17	7 000 7 000	11 000 11 000	RHNA101413AV RHNA101416AV	0,007 0,00 9	
10	16 16 16	10 15 17	1,7 1,7 1,7	7,2 8,2 13	11 12 19,5	7 000 7 000 7 000	11 000 11 000 11 000	941/10 942/10 943/10	0,007 0,009 0,011	
12	17	12	1,2	5,3	6,7	12 000	18 000	RHNA121712	0,009	
15	20 20	12 12	1,2 1,2	8,8 5,8	15,5 9,1	5 000 9 500	8 000 15 000	941/15 RHNA152012	0,010 0,008	
17	23 23	18 22	1,2 1,7	17 21	30 39,5	4 500 4 500	7 000 7 000	942/17 943/17	0,021 0,027	
18	24 24	12 16	1,2 1,2	11 15,5	17 27	4 000 4 000	6 300 6 300	940/18 942/18	0,013 0,01 9	
19,05	25,4	15,875	1,3	12,5	17	7 500	12 000	RHNA192516A	0,019	
20	26	20	1,2	20,5	41	3 800	6 000	942/20	0,028	
22	28 28	14 14	1,2 1,2	14,5 19,5	26,5 36	3 600 3 400	5 300 5 000	941/22 RHNA222814V	0,020 0,021	
22,22	30,1	20,62	1,1	17,5	25,5	6 700	10 000	RHNA223021A	0,034	
22,225	30,12	25,4	1,5	25,5	39	6 700	10 000	RHNA223025A	0,045	
25	32 32 32 32 32 32	22 22 25 26 26	1,5 1,5 1,5 1,5 1,5	27,5 21 32,5 24,5 38,5	56 38,5 66 47,5 82	3 200 6 000 3 200 6 000 3 000	4 800 9 000 4 800 9 000 4 500	942/25 RHNA253222 943/25 RHNA253226 RHNA253226V	0,025 0,040 0,047 0,048 0.058	
	33 33	20 20	1,5 1,5	26,5 20	45 32,5	3 200 5 600	4 800 9 000	940/25 RHNA253320A	0,043 0,039	
25,4	31,75	12,7	1,3	19	36,5	3 000	4 500	RHNA253213AV	0,024	
28,575	38,1	31,750	2	46	56	2 600	4 000	RTNA293832A	0,095	
	38	24	1,5	35	70	2 600	4 000	942/30	0,061	
30	38 38 38	24 25 25	1,5 1,5 1,5	25,5 36,5 26	46,5 74 47,5	5 000 2 600 5 000	7 500 4 000 7 500	RHNA303824 940/30 RHNA303825	0,057 0,064 0,058	
35	43 43	25 32	1,5 1,6	29,5 60	59 145	4 300 2 400	6 700 3 600	RHNA354325 943/35	0,074 0.093	

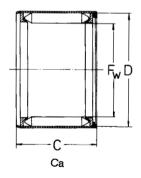
Non-standard drawn cup needle roller bearings

RHNA


RHNA V

94

Dimen	Bions		•	Basic ra load	adial	Speed li	mit	Designation	Weight
Fw	D	С	r _s min.	dyn. C _r	stat. C _{Or}	grease	oil		
mm				kN		min ⁻¹		_	kg
37	44 45	22 18	1,5 1,5	20,5 19	43 20	4 000 4 000	6 300 6 300	RHNA374422RS RHNA374518RS	0,049 0,049
38	47,625	25,400	1,5	55	120	3 800	6 000	RHNA384825AV	0,107
45	55 59	38 38	2,5 1,5	77 59	190 125	1 800 3 200	2 800 5 000	943/45 RHNA455538	0,181 0,162
50	60 60	38 38	1,8 1,5	82 61	210 135	1 700 3 000	2 600 4 800	943/50 RHNA506038	0,207 0,176

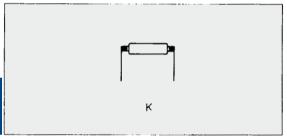


Non-standard drawn cup needle roller bearings

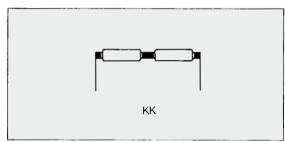
Dimens	enoi				Basic ra load	dial	Speed li	imit	Designation	Weight
Fw	D	С	r _s min.	C ₁	dyn. C _r	stat. C _{Or}	grease	oil		
mm					kN		min ⁻¹		_	kg
10	16 16	10,15 12	1	7,4 9,8	6,839 8,25	7,776 9,924	7 000 7 000	11 000 11 000	CNA101610V RFNA101612V	0,007 0,009
11,113	15,785	12,705	8,0	11,9	5,9	7,8	12 000	19 000	RBNA111613A	0,007
16	22	13	1,1	10,8	12,572	20,69	4 800	7 500	CNA162213V	0,017
17	23	12	1,5	9,8	7,1	5,8	8 500	13 000	RBNA172312	0,015
17,065	23,88	17,462	1,2	16,7	6,8	7,7	8 000	13 000	RBNA172417RS	0,015
30	37	20	1,3	17,3	19,5	38	5 000	7 500	RBNA303720	0,045

Non-standard drawn cup needle roller bearings

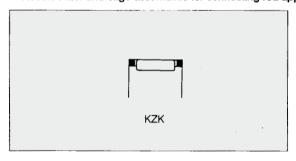
Dimen	sions				Basic ra	dial	Speed I	imit	Designation	Weight
Fw	D	С	rs min.	C ₁	dyn. Cr	stat. Cor	grease	oil		
mm					kN		min ⁻¹		-	kg
25	31	21			32,135	60,02	3 000	4 800	Ca253121V	0,032
29	35	25			35,407	70,98	2800	4 300	Ca293525V	0,052

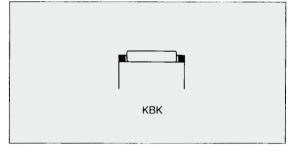


The low cross section of needle roller and cage assemblies allows compact and stiff bearing arrangements. As the ratio between needle roller length to its diameter has high values, needle rollers have high load carrying capacity in limited space.


Needle roller and cage assemblies are manufactured in the following constructive versions:

Needle roller and cage assemblies


single row



double row

Needle roller and cage assemblies for connecting rod application

Suffixes

- dimensions rounded to whole numbers

- machined steel cage

- machined light alloy cage

- polyamide moulded cage

Cages

Cages are generally machined of steel and have "M" profile. Needle rollers are located in their seatings which provide an axial guiding parallel to the axis. Therefore, they can be used at high speeds.

The cages are machined of steel or of glass fibre reinforced polyamide 6.6.

In case of polyamide cages, the operating temperature should not exceed +120°C.

Cage design and some technical data are given in table 1.

Cage design and some technical data

Table 1

Cage	Design bearing	cage	Application	Max. value D _m n oil grease
Pressed sheet cage			- General application	400×10 ³ 250×10 ³
Machined steel cage F			- General application	450×10 ³ 300×10 ³
Polyamide cage TN			- General application	500×10 ³ 350×10 ³

Tolerances

The needle rollers in a cage should be of the same sort and having a diameter deviation of 2 μ m. They are in accordance with international standards.

Labels showing different colours are to be applied on each package containing needle rollers, so that their sort can be identified (see table 2).

Needle rollers sort codification

Table 2

Colour	Sort μm	
red	0/-2	-1/-3
blue	-2/-4	-3/-5
white (grey)	-4/-6	-5/-7

Radial clearance and adjoint parts tolerances

Needle cages operate directly on the shaft and into the housing bore. Bearing radial clearance is determined by the tolerance of the needle roller raceways.

Shaft tolerances for needle rollers of the sorts in table 2 and for housing bore manufactured to the tolerance class G6, are given in table 3.

Shaft tolerances for housing bore in G6

Table 3

Shaft diameter	Shaft toleranc	es for radial cle	arance:
	smaller than normal	normal	larger than normal
mm			
≤ 80	j5	h5	g6
> 80	h6	g5	f6

Since the needle rollers roll directly on the shaft and into the housing bore, raceway hardness should be 58 - 65 HRC and surface roughness $R_a \le 0.2\,\mu m$ for high exigence and $R_a \le 0.3\,\mu m$ for moderate exigence.

If the above mentioned hardness is not assured or the shaft and housing are of other materials than RUL, the bearing cannot carry the initial basic load. This should be decreased according to the specifications on page 288, table 1.

Tolerances of the needle roller cages adjoint parts, shaft and housing bore, respectively, are given in table 4, for normal and high accuracy.

Tolerances of cages adjoint parts

Table 4

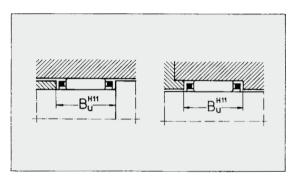
Rotation accuracy	Raceway	Tole- rance	Cylindricity, roundness	Shoulder runout
normală	Shaft	П5	<u>IT3</u>	IT3
	Housing	IT6	<u>IT3</u> 2	IТЗ
high	Shaft	IT4	<u>IT1</u>	IT1
	Housing	iT5	<u>11,5</u>	IT2

Pair mounted cages

If the basic load of a needle cage is not satisfactory for bearing loading and pair mounting is necessary, cages should have the same sort of needle rollers so that the load can be uniformly distributed on both cages.

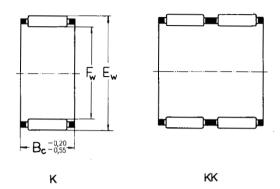
Equivalent dynamic and static load

Needle cages can carry only pure radial loads. These can be calculated using the equations:


$$P_r = F_r, kN$$

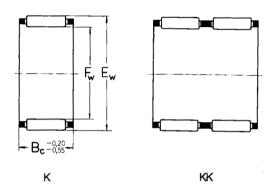
 $P_{0r} = F_r, kN$

Abutment dimensions


A large enough clearance should be between the side contact surfaces, so that needle cages won't be blocked. A mounting distance width in tolerance class H11 provides an axial clearance large enough for proper operation. The side contact surfaces should be manufactured accurately enough to avoid blocking and in case of high speeds, they should be heat treated and ground.

If needle cages are in direct contact with the shaft shoulder on one side and with the seating shoulder on the other side, the shaft should be axially guided to avoid blocking of the needle cage.

The height of the shaft and seating shoulders in case of side guidance of needle cages should be 70 - 90% of the needle roller diameter, as shown below.



Dimen	sions		Basic ra	adial	Speed li	mit	Designation	Weight	
Fw	Ew	Bc	dyn. Cr	stat. Cor	grease	oil			
mm			kN		min ⁻¹	-	_	kg	
3	5 6	9 7	1,7 1,4	1,45 1,45	34 000 34 000	50 000 50 000	K030509TN K030607TN	0,0003 0,0004	
4	7	7	1,7	1,25	30 000	45 000	K040707TN	0,0005	
5	8 8	10 8	2,9 2,3	2,6 1,85	26 000 26 000	40 000 40 000	K050810TN K050808TN	0,0009 0,0007	
6	9	8	2,55	2,2	22 000	36 000	K060908TN	0,0009	
7	10	8	2,8	2,5	20 000	34 000	K071008TN	0,0010	
8	11 11 12	10 10 10	3,85 4 4,85	4 4,7 4,6	19 000 19 000 19 000	32 000 32 000 32 000	K081110 K081110TN K081210	0,0015 0,0018 0,0020	
9	12	10	4,4	2,85	18 000	30 000	K091210	0,0015	
10	13 13 14 16	10 13 10 12	4,65 6,05 5,6 7,8	5,4 7,75 5,85 7	17 000 17 000 17 000 17 000	28 000 28 000 28 000 28 000	K101310 K101313 K101410 K101612	0,0017 0,0026 0,0035 0,0060	
12	15 17	15 13	5,75 8,1	8,2 9,3	16 000 16 000	26 000 26 000	K121515 K121713	0,005 0,008	
13	20	10	8,5	11,3	15 000	24 000	K132010	0,005	
14	18 18	10 13	5,55 8,1	6,8 9,9	15 000 15 000	24 000 24 000	K141810 K141813	0,006 0,007	
16	22 22	12 16	8,4 12,1	9,25 14,9	15 000 15 000	24 000 24 000	K162212 K162216	0,011 0,013	
18	22	10	6,25	8,5	14 000	22 000	K182210	0,008	
20	24 26 30	17 20 18	12,5 17,1 19,8	21,7 24,6 21,6	13 000 13 000 13 000	20 000 20 000 20 000	K202417 K202620 K203018L	0,011 0,026 0,040	
22	26 38 38	10 19 19	7,3 30,2 25,7	6 29,5 27,5	13 000 11 000 11 000	20 000 18 000 18 000	K222610 K223819 K223819L	0,065 0,066 0,052	
24	28	10	7,5	11,8	10 000	17 000	K242810	0,010	
25	30 30 31 32 38 38	17 20 17 24 25 25	15,8 15 16,2 24,3 37,2 34,7	26,8 22 24,5 37,5 43,8 41	9 500 10 000 9 500 9 500 9 500 9 500	16 000 17 000 16 000 16 000 16 000 16 000	K253017 K253020 K253117 K253224 K253825 K253825L	0,019 0,028 0,025 0,038 0,070 0,063	

Dimens	sions		Basic ra	adial	Speed li	mit	Designation	Weight
Fw	Ew	Bc	dyn. Cr	stat. Cor	grease	oil		
mm			kN		min ⁻¹	•	_	kg
26	30	17	13,8	26,6	9 000	15 000	K263017	0,017
28	32	15	11,8	22,4	8 500	14 000	K283215	0,025
29	32	30	21,3	52,5	8 500	14 000	KK293230	0,026
30	35 35 35 40	13 13 15 30	114 14,3 14,3 42,3	25,3 23,1 23,1 63,2	8 000 8 000 8 000 8 000	13 000 13 000 13 000 13 000	K303513 K303513L K303515 K304030	0,018 0,011 0,018 0,071
	42 42	44 44	65,9 63,5	99,5 97	8 000 8 000	13 000 13 000	K304244 K304244L	0,132 0,159
33	47 47	22 22	38,2 37,2	46 44,5	7 500 7 500	12 000 12 000	K334722 K334722L	0,073 0,076
35	40 42	17 18	19,2 25,8	38,5 42,5	7 000 7 000	11 000 11 000	K354017 K354218	0,024 0,041
36	44	20	27,8	45	7 000	11 000	K364420	0,066
40	48	20	34,5	51,8	6 700	10 000	K404820	0,058
4 2	47 48	27 27	31,1 31	76 75	6 300 6 300	9 500 9 500	K424727 K424827	0,060 0,068
45	49 50 53	19 17 21	19,2 22,2 33,3	49,1 50,3 60,6	6 000 6 000	9 000 9 000 9 000	K454919 K455017 K455321	0,032 0,030 0,056
50	57 58 60	18 25 32	27,7 39,3 57,5	54,5 77,8 108	5 300 5 300 5 300	8 000 8 000 8 000	K505718 K505825 K506032	0,068 0,092 0,136
52,39	61,91	25,4	49,8	95	5 000	7 500	K526225A	0,093
55	60 60 63 63	20 30 20 24	25,2 38,9 33,2 42,1	63,4 97,9 64,4 87,8	5 000 5 000 5 000 5 000	7 500 7 500 7 500 7 500	K556020 KK556030TN K556320 K556324	0,055 0,045 0,080 0,101
57	63	43	61,5	157	4 800	7 000	KK576343	0,111
58	65	36	54,7	121	4 800	7 000	KK586536	0,112
60	65 68 68 68 68 68	20 20 23 30 30 34	28,4 37 40 54,2 42,8 60,9	69,7 76,5 84,3 125 81,6 145	4 500 4 500 4 500 4 500 4 500 4 500	6 700 6 700 6 700 6 700 6 700 6 700	K606520 K606820 K606823 K606830 KK606830 K606834	0,032 0,096 0,120 0,115 0,132 0,128

imensions		Basic ra	adial	Speed li		Designation	Weight	
w Ew	Bc	dyn. Cr	stat. Cor	grease	oil			
nm		kN		min ⁻¹	-	_	kg	
0 68	34	48	94,5	4 500	6700	KK606834	0,147	
5 77	23	56,3	97,5	4 000	6 000	K657723L	0,119	
8 74	45	66,6	184	4 000	6 000	KK687445	0,171	
0 78	37	68,5	177	3 800	5 600	K707837	0,326	
5 83	23	46	109	3 800	5 600	K758323	0,145	
0 88 88	40 46	81,4 94,3	206 248	3 400 3 400	5 000 5 000	KK808840 KK808846	0,255 0,253	
4 96	37	94,5	214	3 200	4 800	K849637	0,302	
5 92	20	38,9	101	3 200	4 800	K859220	0,118	
5 103	40	88,5	242	2 800	4 300	KK9510340	0,259	
05 112	21	46,2	135	2 400	3 800	K10511221	0,157	

Needle rollers and cage assemblies for connecting rod applications

Needle rollers and cage assemblies for connecting rod applications of small and medium sized internal combustion engines have special designs because of the severe operating conditions. For crankpin bearings, M type needle cages are used with external guidance, i.e. in the connecting rod and for piston pin bearings they are used with internal guidance, i.e. on the pin. The designations of these cages are KZK for crankpins and KBK for piston pins.

The materials used for connecting rods, crankpins and piston pins should be case-hardening steels. The thickness

of the case-hardened layer after grinding should be of 0,4...1 mm and minimum hardness should be 60 HRC. The tensions in connecting rods should be released after hardening, at a temperature between 160°... 180°C, for 2-4 hours.

Raceway hardness should be $R_a \le 0.16 \mu m$.

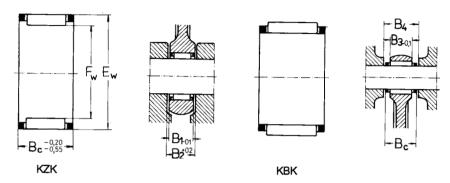
The coaxiality deviations between piston pin and crankpin should not exceed 0,03 mm on a length of 100 mm.

Form deviations for the adjoint parts are given in table 5.

Approximate values of piston pin and crankshaft form deviations

Table 5

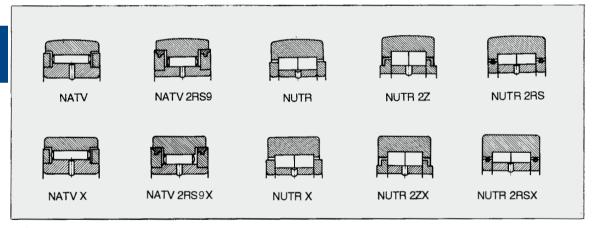
Nominal diameter of crankshaft and piston pin, mm	over up to	10 14	14 18	18 25	25 30	30 40	
	Permissibl	e values in mic	rometers (µm)			7014	
Taper ¹⁾	Pin Bore	1 2	1 3	2	2	3	
Ovainess	Pin Bore	1 1,5	1 2	1, 5 2	1, 5 2, 5	2 2, 5	


¹⁾ The values of the taper are related to the needle roller length.

Radial clearance for crankpin should be of 0,02...0,029 and for piston pin should be of 0,002...0,010 mm.

The minimum value of the clearance for crankpin should be of 1/1000 of the crankpin diameter.

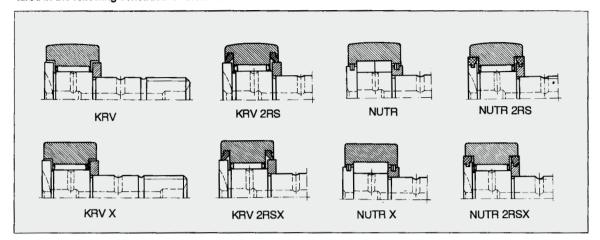
Needle roller and cage assemblies for connecting rod applications


Dime	nsions		Basic	radial	Weight	Designation	Mour	nting d	imensions					
Fw	Ew	Вс	load dyn. C _r	stat. Cor			inferio	or B ₃	B ₄	supe B ₁	rior B3	B ₄	B ₂	
mm			kN		kg	-	mm	-						
12	15	15	6,25	8,1	0,005	KBK121515		12	15+0,4		15	15+0,2		
14	18 18	10 13	6,65 8,25	8,1 10	0,006 0,008	KZK141810 KZK141813	10 13		10+0,4 13+0,4	11		10+0,2 13+0,2	10,2 13,2	
18	24	13	12,2	13,7	0,012	KZK182413	13		13+0,4	11		13+0,2	13,2	

Support rollers, cam followers and rolling mill support rollers

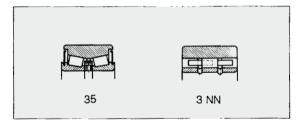
Support rollers

Support rollers have thick-walled outer rings which roll directly on the adjoint surface. The outside surface of the outer ring is cylindrical or convex. Support rollers with convex ring can accomodate some errors of alignment. They are manufactured in the following constructive versions:


Support rollers with outside diameters $D \le 32$ mm, NATV designation are manufactured only with needle rollers, without cages and those with outside diameters D > 32 mm are manufactured with double row cylindrical rollers, without cages, NUTR designation. Support rollers with cylindrical rollers can carry heavy radial loads and shock loads.

Cam followers

Cam followers have the outer ring as that of support rollers, but have a solid stud instead of an inner ring. The raceway is on the stud, which guide the outer ring by means of a collar and a flange. The cam followers are manufac-


tured in the following constructive versions:

Cam followers with outside diameters D \leq 32 mm are also manufactured only with needle rollers, KRV designation and those with outside diameters D > 32 mm are manufactured with cylindrical rollers, without cages, NUKR designation and have a high load carrying capacity.

Rolling mill support rollers

Support rollers for cold rolling are manufactured both with cylindrical and tapered rollers. They have the outer ring with large cross section and thus they can carry very high loads. Their dimensions are not standardized.

Support rollers and cam followers are manufactured both in sealed and shielded versions. They are sealed with rubber seals or labyrinth seals. Support rollers and cam followers are lubricated with lithium based grease and can operate between -30°C and +80°C.

Generally, support rollers and cam followers are filled with grease for the entire operating period, excepting the rollers which have relubrication holes.

Tolerances

The tolerances of the cylindrical outside surfaces of the support rollers and cam followers correspond to those of the cylindrical roller bearings manufactured to the normal tolerance class, excepting those with convex outside surfaces. In this case, the outside diameter tolerance is of 0/-0,05 mm. Mounting diameter d of cam rollers is

manufactured to the tolerance class h7.

Rolling mill support rollers are manufactured to the tolerance classes P4 and P5, respectively.

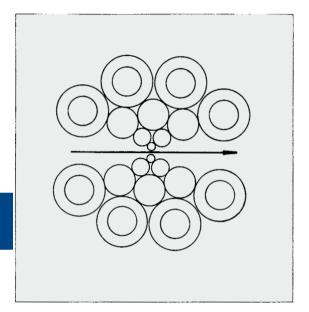
Misalignment

Support rollers and cam followers with cylindrical outer ring can take errors of alignment up to 3'...4' in case of light loads and up to 5'...7' in case of moderate and heavy loads. Cam followers with convex outside surface can take errors of alignment of 15' - 20'. For greater errors of alignment, high additional efforts can occur which reduce the basic static load and rating life.

Support rollers and cam followers in applications

If the cam follower is used as a bearing mounted in the housing, the values of the basic static and dynamic loads C_r and C_{or} according to ISO 281

If the cam follower rolls directly on the adjoint surface, the radial load causes elastic deformations in the outer ring. This leads to modifications in load distribution on the rolling elements and thus the permissible values of the dynamic and static load decrease. Moreover, the bending strains which occur in the outer ring due to the deformation should not exceed the permissible values for a certain material. Therefore, the maximum dynamic radial load should be limited to the values for $C_{\rm rc}$ and maximum static radial load should be limited to the values of $C_{\rm orc}$.


Maximum radial load should also be limited in dynamic conditions (F_r) and static conditions (F_{0r}) to the values in the tables, so that proper stiffness of the outer ring and load distribution should be assured. At that, in case of cam followers, shaft and housing stiffness limits F_r and F_{0r} values.

Rolling mill support rollers in applications

Support rollers for cold rolling Sendzimir process are used as shown in figure bellow. While operating, these rollers wear and their outside surface should be ground.

Support rollers with taper rollers are sidewise shielded by two sheet lids. In case of dynamic operating conditions, dynamic load should not exceed 0,5 C_r and static load should not exceed 0,75 C_{0r} .

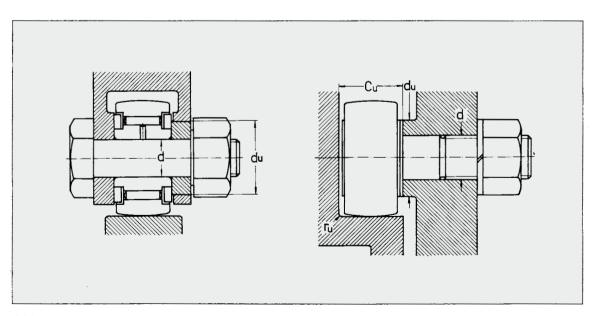
Abutment dimensions

In most cases, a constant load acts upon the outer ring of a support roller, thus it is not necessary to be mounted too tightly. The shaft tolerance is recommended to be j6 and j5 in case of those without inner ring.

For support rollers without inner ring, the specifications for the adjoint parts should be observed.

Cam followers should be mounted into a housing bore with tolerance class H7.

Other mounting dimensions are given in tables containing rollers (see figure bellow).

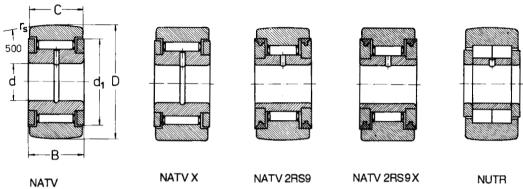

Example

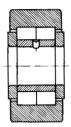
A cam follower operates at a speed of 1 000 r/min and carries a radial load $F_T = 4$ kN. It is necessary to determine the roller size so that the cam follower rating life would be L10h = 2 000 operating hours.

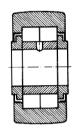
Using the equation on page 18, we can calculate Cr.

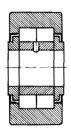
 $C_f = 16,8 \text{ kN}$

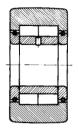
From the table, we select the roller witi: the next greater basic dynamic load C_{Γ} . This is KRVT40 with $C_{\Gamma}=19.1$ kN.

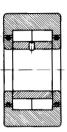





Support rollers



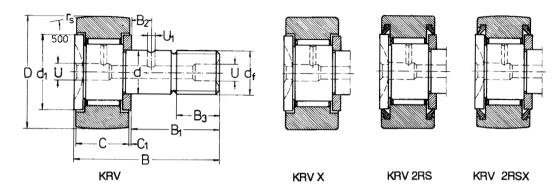

	NAI	V							1,0111
Dime	nsions						Designation new		old
D 	С	В	d	d ₁	r _s min.	r _{1ş} min.	convex surface	cylindrical surface	
mm							_		
24	14	15	8	20	0,3		NATV8-2RS9	NATV8-2RSX	
30	14	15	10	24	0,6		NATV10-2RS9	NATV10-2RSX	
32	14	15	12	26	0,6		NATV12-2RS9	NATV12-2RSX	
35	18	19	15	20	0,6	0,3	NATV15-2Z	NATV15X	NNUP5103V2Z
42	18	19	15	20	0,6	0,3	NUTR1542-2Z	NUTR1542-2ZX	NNUP5203V2Z
47	24 24	25 25	20 20	30 30	1	0,3 0,3	NUTR20 NUTR20-2Z	NUTR20X NUTR20-2ZX	NNUP5104V NNUP5104V2Z
52	24	25	25	33,8	1	0,3	NUTR25	NUTR25X	NNUP5105V
62	24 24 28	25 25 29	25 25 30	39,3 39,3 39,3	1 1 1	0,3 0,3 0,3	NUTR25-2Z NUTR2562 NUTR30	NUTR25-2ZX NUTR256-2X NUTR30X	NNUP5205V2Z NNUP5205V NNUP5206V
72	28 28 28	29 29 29	30 35 35	47 47 47	1 1,1 1,1	0,3 0,3 0,3	NUTR3072 NUTR35 NUTR35-2Z	NUTR307-2X NUTR35X NUTR35-2ZX	NNUP5106V NNUP5107V NNUP5107V2Z
80	30 30	32 32	40 40	52 53	1,1 1,1	0,3 0,3	NUTR40 NUTR402Z	NUTR40X NUTR402ZX	NNUP5108V NNUP5108V2Z
90	30 30	32 32	40 40	55 55	1,1	0,3 0,3	NUTR4090 NUTR40902Z	NUTR4090X NUTR4090X2ZX	NNUP5208V NNUP5208V2Z
100	30 30	32 32	45 45	61 61	1:1	0,3 0,3	NUTR45100 NUTR45100-2Z	NUTR45100X NUTR45100-2ZX	NNUP5109V NNUP5109V2Z
250	114	114	140	183	4,5	1,5	NUTR140-2RS	NUTR140-2RSX	NNUP5228VC3
300	120	120	150	210,6	4,5	1,5	NUTR150-2RS	NUTR150-2RSX	NNUP5130VC3



NUTR X

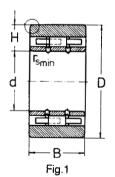
NUTR 2Z

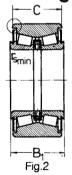
NUTR 2ZX

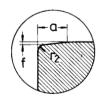

NUTR 2RS

NUTR 2RSX

Basic rae Bearing	dial load	Roller		Maximal	radial load	Speed limit	Mounting dimension	Weight
dyn.	stat.	dyn.	stat.	dyn.	stat.	*******	umension	
C _r	Cor	C _{rc}	Corc	Fr	For	grease	du	
kN						min ⁻¹	mm	kg
10,4	16,9	8,3	11,8	7,5	10,6	8 500	14	0,043
13,9	18	11	12,6	10	11,3	7 500	20	0,066
15,1	20,7	13,3	14,5	12	13	7 000	20	0,075
25,8	29,2	18	20,5	16,2	18,4	6 700	26	0,100
19,1	20,6	14	14,5	12,5	13	5 600	26	0,160
31 31	54 54	22 22	39 39	19,8 19,8	35 35	4 500 4 500	36 36	0,221 0,221
44,5	60,7	31	42	28	38	4 500	44	0,268
34,5 44,5 58,7	68 60,7 76,3	24,5 31 41	47,5 42 53,5	22 28 37	42,5 38 48	4 000 4 000 3 200	44 44 53	0,455 0,455 0,446
58,7 64,5 64,5	76,3 89,9 89,9	41 42 42	53,5 60 60	37 38 38	48 54 54	3 200 2 800 2 800	53 53 53	0,666 0,608 0,608
87,1 87,1	123 123	61 61	86 86	55 55	77,5 77,5	2 400 2 400	62 62	0,837 0,837
86,5 86,5	123 123	60,5 60,5	86 86	54,5 54,5	77,5 77,5	2 400 2 400	62 62	0,867 0,867
94,7 94,7	143 143	66,3 66,3	100 100	60 60	90 90	2 000 2 000	62 62	1,38 1,38
837	1 618	586	1 133	527,5	1 020	1 600	190	26,9
980	1 635	685	1 145	617	1 030	1 400	210	45,2

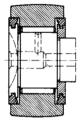


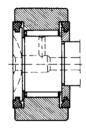

Cam followers



Dim	ensijo	ns											Designation	
D	С	d	В	B ₁	B ₂	В3	C ₁	d ₁	df	U	U ₁	r _s min.	convex surface	cylindrical surface
mm													-	
22	12	10	36	23		12	0,6	17	M10×1		4	0,5	KRV22	KRV22X
30	14 14	12 12	40 40	25 25	6 6	13 13	0,6 0,6	23 24	M12×1,5 M12×1,5	6 6	3 3	0,6 1	KRV30 KRV302RS9	KRV30X KRV302RS9X
35	18	16	52	32,5	8	17	0,8	27	M16×1,5	6	3	1	KRV352RS	KRV352RSX
38	22	19	55	32	7,5		0,8	28	G1/4	6	3	1	KRV38XF2	KRV38XF2X
40	20	18	58	36,5	8	19	8,0	32	M18×1,5	6	3	1	KRV40	KRV40X
52	24	20	66	40,5	9	21	8,0	37	M20×1,5	8	4	1	KRV52	KRV52X
80	35 35	30 30	100 100	63 63		15 15	1	52 53	M30×1,5 M30×1,5	8 8	4 4	1,1 1,1	NUKR80 KRV80	NUKR80X KRV80X

Rolling mill support rollers




				_					
Dimensi						Basic ra load		Fig.	Designation
d	D	В	B ₁	r _s min.	r ₂	dyn. C _r	stat. C _{0r}		
mm						kN			
130	300	172,644	172,644	3,5	1.5	1 450	2 600	1	3NN5126MP4NAS1W26
179,984	406,4	223,830	220,665	3,2	3,2	2 450	4 420	2	T-35336BJP5

NUTR

NUTR X

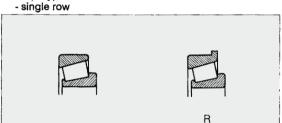
NUTR 2RS

NUTR 2RSX

Designation	Basic lo	ad rating	3		Maximal radial load		Speed limit	Weight	Abutment dimensions		
convex surface	Bearing dyn. C _r	stat. Cor	Roller dyn. C _{rc}	stat. C _{Orc}	dyn. Fr	stat. For			Cu	du	ru
_	kN						min ⁻¹	kg	mm		
KRV22	10,06	12,9	8,5	9,7	7,08	7,96	9 000	0,04	14,7	15	0,3
KRV30 KRV302RS9	13,53 13,53	19,85 19,85	11,10 11,10	16,3 16,3	13,0 13,0	16,1 16,1	7 500 7 500	0,09 0,09	16,7 16,7	18 18	1,0 1,0
KRV352RS	20,26	31,07	15,60	23,2	17,2	18,2	6 700	0.17	21,1	29	1,0
KRV38XF2	31,88	59,38	, 25,50	44,5	19,5	18,3	5 600	0,24	25,1	31	1,0
KRV40	24,07	30,63	19,10	29,7	21,1	18,8	6 0 <u>9</u> 0	0,25	23,1	32	1,0
KRV52	31,88	59,38	26,80	44,3	55,2	62,9	5 300	0,47	27,1	30	1,0
NUKR80 KRV80	93,5 68,19	128 142,9	72 59,60	97 120 -	79 148	110 176	2 600 3 600	1,66 1,66	38,5 38,5	44 44	1,0 1,0

Outer diameter unload a f		Bearing cross section H	Weight	Equivalence	
mm			kg	_	
12,7	0,2	84,955+0,010	71	26DC30160	коуо
15	0,140		159	46T364122 EH239549NA/K107552	KOYO TIMKEN

Tapered roller bearings


Tapered roller bearings have the rolling elements under the form of frustra of cones. They roll on tapered surfaces which, if extended, converge towards a single point on the bearing axis.

The rollers are guided tangentially by the cage and axially by the big rib of the outer ring, on which they have point contact. As between rollers and raceways there is


linear contact, tapered roller bearings can take heavy radial loads. They can also take heavy axial or combined loads. depending on the contact angle caused by the tapered rolling elements. The contact angle is the angle of the outer raceway generatrix.

Tapered roller bearings can be manufactured in the versions: single, double and four row rollers.

Basic types and constructive versions:

double row

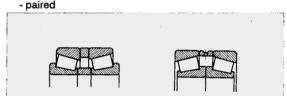
Suffixes

DB

DF

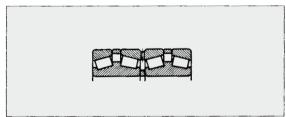
A - increased basic load

A... - axial clearance of bearing set


- enlarged contact angle

- set of two bearings mounted in back-to-back arrangement (O)

- set of two bearings mounted in face-to-face arrangement (X)


DF - bearings with double row of rollers in face-toface arrangement (X)

- machined cage of hardened steel or special cast iron

- four-row

F32

F2 constructive modifications

> - bearings with double row rollers in face-toface arrangement, without distance ring between the outer rings

- pressed cage of not hardened steel sheet

κ - tapered bore 1:12 M - machined brass cage

P6X - tolerance class with smaller values than nor-

P5 - tolerance class with smaller values than P6X

P4 - tolerance class with smaller values than P5 **P2**

- tolerance class with smaller values than P4 R

- rib on the outer ring

2RSR - two rubbing seals on the inner ring

so - operating temperature up to +150°C

S1 - operating temperature up to +200°C

T... - bearing set widthTN - polyamide cage

W6 - keygroove on the bore

W7 - locating hole on the outer ring

W28 - helical groove on bore surface

W67 - locating groove on the inner ring face

 W69 - keygroove on the bore and locating ring on the inner ring face

- modified main dimensions according to ISO

Single row tapered roller bearings

Single row tapered roller bearings are of separable design, i.e. the outer ring and the inner ring with rollers and cage assembly can be separately mounted. These two assemblies are interchangeable.

Tapered roller bearings can be manufactured both in standardized constructive versions with dimensions series 320, 302, 322, 303, 323, 313 and with non-standardized dimensions, mm or inch.

Tapered roller bearings can carry only single direction axial loads. Under pure radial loads, an axial force occurs which is supposed to distance the bearing rings in axial direction. Therefore, tapered roller bearings are generally pair mounted on both ends of the shaft, in "X' or "O" arrangements, so that the shaft will be axially located in both directions (table 4). Thus, the optimum clearance in these two bearings can be adjusted.

Single row tapered roller bearings can also be manufactured with rib on the outer ring. This design is to be used when the housing cannot be manufactured with shoulder, but only with a passed through bore. In this case, axial location can be provided by the bearing ring.

Paired single row tapered roller bearings

If tapered roller bearings are pair mounted in "X" or "O" arrangements, the load carrying capacity increases and loads can be taken in both directions in the same bearing.

These bearing sets have guaranteed clearance after mounting since the distance rings are mounted between the bearing rings.

For certain applications, paired bearings can be delivered with small clearance or lightly preloaded.

Double row tapered roller bearings

Double row tapered roller bearings are used where load carrying capacity should be greater, loads should be taken in both directions and axial space is smaller than in case of a set of two single row tapered roller bearings.

Double row tapered roller bearings can have the rollers

in face- to-face arrangement, double inner ring and two outer rings respectively or the rollers in back-to-back arrangement, i.e. double outer ring and two inner rings.

The first design provides greater stiffness, can take tilting moments and shaft expansions can be compensated.

The bearings of the second design can be manufactured with tapered bore so that they can be frequently mounted /dismounted.

Double row tapered roller bearings can have or not distance rings with lubrication holes, mounted between the simple rings.

In case of bearings with distance rings, the bearing clearance or preload are pre-adjusted; in case of those without distance rings, bearing clearance and preload can and should be adjusted while mounting.

Double row tapered roller bearings with rollers in backto-back arrangement can also be manufactured in the following two versions:

- with rib on the outer ring; the housing has no shoulder and the bearing is axially located by the rib
- with two seals; this design is used in motor vehicles construction. The bearings are delivered filled with grease and relubrication is not needed.

Four-row tapered roller bearings

Four row tapered roller bearings are used where heavy axial and radial loads are to be taken, particularly in case of heavy duty equipments. They have two double inner rings and three outer rings, one of them being double.

Between rings, there are mounted distance rings provided with lubrication holes which ensure the pre-adjusted value of clearance.

Dimensions

Tapered roller bearings are manufactured with the following dimensions:

- standardized:
 - according to ISO 355 and national standard 3920, respectively - single row tapered roller bearings
 - according to national standard double row tapered roller bearings
 - according to national standard four-row tapered roller bearings
- non-standardized, metric dimensions (mm)
- non-standardized, inch dimensions

Misalignment

As between rollers and raceway there is a linear contact, tapered roller bearings have low capacity to compensate for errors of alignment between shaft and housing.

Permissible values of misalignment between shaft and housing are given in table 1, depending on bearing size and load magnitude.

Permissible misalignment

Table 1

Bearing series	Load magnitude	Permissible misalignment
329, 320,	$F_r/C_{0r} < 0.1$	2'
302, 322, 303, 313	$F_{\rm f}/C_{\rm Or} > 0,1$	4'
323, 34	$F_r/C_{0r} < 0.1$ $F_r/C_{0r} > 0.1$	1'30" 3'
35, 36	$F_r/C_{0r} < 0.1$	1'
seturi DB, DF	$F_{r}/C_{0r} > 0,1$	2'

Tolerances

Tapered roller bearings are generally manufactured to the normal tolerance class ISO and AFBMA, respectively (for bearings with inch dimensions).

For certain applications (e.g. bearings for machinetools), they can be also manufactured to tolerance classes P5 and P6X or 3 AFBMA.

At request, they can be manufactured to tolerance class P4. Single row tapered roller bearings have the outer rings interchangeable with the inner ring - rollers - cage assembly (if they have the same mark) and also with bearings produced by other companies, according to ISO and AFBMA respectively.

The parts of the two and four row tapered roller bearings are non-interchangeable.

The tolerances for bearings overall dimensions are given in tables on page 37 for tapered roller bearings, both with metric and inch dimensions. Tolerances for mounting chamfer are given in tables

Radial and axial clearance

In case of tapered roller bearings, clearance should be in radial direction, but it is measured and adjusted in axial direction. As tapered roller bearings are dismountable, their clearance is not guaranteed by design and it is adjusted while mounting. Thus, optimum clearance can be obtained for that application.

In case of double and four row tapered roller bearings with distance rings between bearing rings, the clearance is guaranteed and its values are given in table 2. The bearing parts are numbered for each bearing so that the prescribed clearance on each row should be observed while mounting.

In case of bearings without distance rings, clearance is adjusted as for single row tapered roller bearings: for DB design - by the inner rings and for DF design by the outer rings. The above specifications are also available for bearings matched in sets.

The values of the axial clearance can be calculated using the equation:

axial clearance =
$$\frac{\text{radial clearance}}{2 \text{ tg } \alpha}$$

where α is the contact angle.

In case of certain applications where clearance between shaft and housing should be avoided, tapered roller bearings can also be pre-tightened. This can be adjusted while mounting or is pre- adjusted by distance rings, in case of two or four row tapered roller bearings.

Radial clearance of double and four-row tapered roller bearings

Table 2

Bore liamete l	er	Radial C1	clearance :	symbol C2		Normal		Сз		C4		C5	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
nm		μm											
50	65	0	15	15	30	30	50	50	70	70	90	90	120
35	80	0	20	20	40	40	60	60	80	80	110	110	150
30	100	0	20	20	45	45	70	70	100	100	130	130	170
00	120	0	25	25	50	50	80	80	110	110	150	150	200
20	140	0	30	30	60	60	90	90	120	120	170	170	230
140	160	0	30	30	65	65	100	100	140	140	190	190	260
160	180	0	35	35	70	70	110	110	150	150	210	210	280
180	200	٥	40	40	80	80	120	120	170	170	230	230	310
200	225	0	40	40	90	90	140	140	190	190	260	260	340
225	250	0	50	50	100	100	150	150	210	210	290	290	380
250	280	0	50	50	110	110	170	170	230	230	320	320	420
280	315	0	60	60	120	120	180	180	250	250	350	350	460
115	355	0	70	70	140	140	210	210	280	280	390	390	510
355	400	0	70	70	150	150	230	230	310	310	440	440	580
100	450	0	80	80	170	170	260	260	350	350	490	490	650
150	500	0	90	90	190	190	290	290	390	390	540	540	720
500	560	0	100	100	210	210	320	320	430	430	590	590	790
60	630	0	110	110	230	230	350	350	480	480	660	660	880
30	710	0	130	130	260	260	400	400	540	540	740	740	910
10	800	Ŏ	140	140	290	290	450	450	610	610	830	830	1 100
00	900	ō	160	160	330	330	500	500	670	670	920	920	1 240

Contact angle

Contact angle of tapered roller bearings is the angle of the outer ring raceway generatrix. In case of standardized single row tapered roller bearings, this angle can be found in the standard of dimensions Bearings series 329, 302, 322, 303 and 323 have a contact angle between 10° and 17° and those of series 313 have a contact angle of 28° 48′ 39″, so that they can take heavier axial loads. Non-standardized single row tapered roller bearings and also all double and four-row tapered roller bearings have the contact angle between 9° and 30°.

Cages

Small and medium sized tapered roller bearings are generally fitted with pressed sheet cages. Large sized bearings are generally fitted with machined steel or brass cages, with welded pins. In some cases, median or large sized bearings can also be fitted with machined steel or brass cages. In all cases, the cage is guided on rollers.

For small and medium sized bearings, glass fibre reinforced polyamide 6.6 cages can be successfully used if the operating temperature doesn't exceed + 120°C. They have low weight, are noiseless in operation and have low coefficient of friction.

Designs and some technical data are given in table 3.

Equivalent dynamic radial load

Equivalent dynamic radial load can be calculated using the following equations:

- for single row tapered roller bearings:

$$P_r = F_r$$
, kN, when $F_a/F_r \le e$
 $P_r = 0.4 F_r + Y F_a$, kN, when $F_a/F_r > e$

- for paired bearings and double or four-row tapered roller bearings:

$$P_r = F_r + Y_1 F_a$$
, kN, when $F_a/F_r \le e$
 $P_r = 0.67 F_r + Y_2 F_a$, kN, when $F_a/F_r > e$

For single row tapered roller bearings, the F_a values can be calculated using the equations in table 4. These equations are available when bearings are mounted so that axial clearance is in fact zero without preloading. F_{rA} and F_{rB} should always be considered as being positive, even if they act in the opposite direction to that in the figure.

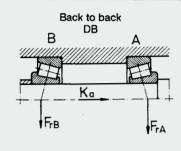
In case of paired bearings and of double or four row tapered roller bearings, F_a and F_r are the loads acting upon the paired bearings or single bearings.

The values of e, Y, Y₁ and Y₂ are given in bearing tables.

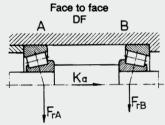
Equivalent static radial load

Equivalent static radial load can be calculated using the equations:

Cage designs and some technical data


Table 3

Cage	Design paring	Cage	Application	Max. value D _m n oil	grease
Pressed sheet cage			- General application - Small and medium sized bearings d ≤ 250 mm	350×10 ³	245×10 ³
Pin cages			- General application - Large sized bearings d > 250 mm	350×10 ³	245×10 ³
Machined brass cage M			General application Median and large sized bearings d > 150 mm	450×10 ³	315×10 ³



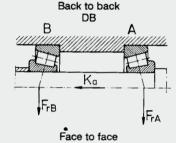

Calculating relations for axial loadings Fa


Table 4

1 ace to lace	
A DF	В
Ka_	
FrA	$F_{r,B}$
1.14	

1a)
$$\frac{F_{rA}}{Y_A} \ge \frac{F_{rB}}{Y_B}$$
$$K_a \ge 0$$

a)
$$\frac{F_{rA}}{Y_A} \ge \frac{F_{rB}}{Y_B}$$
$$K_a \ge 0$$

Axial load

$$\begin{aligned} F_{aA} &= \frac{0.5 \ F_{rA}}{Y_A} \\ F_{aB} &= F_{aA} + K_e \end{aligned}$$

$$\begin{aligned} 1b) \quad \frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B} \\ K_{\alpha} \geq 0.5 \left(\frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A} \right) \end{aligned}$$

$$F_{aA} = \frac{0.5 F_{rA}}{Y_A}$$
$$F_{aB} = F_{aA} + K_a$$

$$\begin{aligned} \text{1c)} \quad & \frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B} \\ & K_a < 0.5 \left(\frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A} \right) \end{aligned}$$

$$F_{aA} = F_{aB} - K_a$$

$$F_{aB} = \frac{0.5 F_{rB}}{Y_B}$$

$$2a) \quad \frac{F_{rA}}{Y_A} \le \frac{F_{rB}}{Y_B}$$

$$K_a \ge 0$$

$$F_{aA} = F_{aB} + K_a$$

$$F_{aB} = \frac{0.5 \, F_{rB}}{Y_B}$$

2b)
$$\begin{aligned} \frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B} \\ K_{a} \geq 0.5 \left(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B} \right) \end{aligned}$$

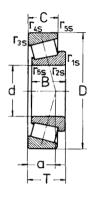
$$F_{aA} = F_{aB} + K_a$$
$$F_{aB} = \frac{0.5 F_{rB}}{Y_{R}}$$

$$\begin{aligned} \text{2c)} \quad & \frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B} \\ & K_a < 0.5 \left(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B} \right) \end{aligned}$$

$$F_{aA} = \frac{0.5 \; F_{rA}}{Y_A}$$

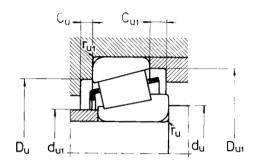
$$F_{aB} = F_{aA} - K_a$$

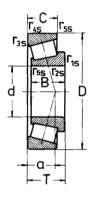
- for single row tapered roller bearings:
- $P_{0r} = F_r, kN,$

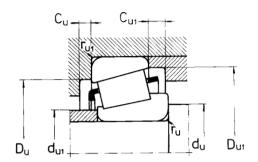

when $F_a/F_r \le 1/2 Y_0$

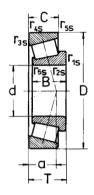
- $P_{0r} = 0.5 F_r + Y_0 F_a$, kN, when $F_a/F_r > 1/2 Y_0$
- for paired double or four row tapered roller bearings

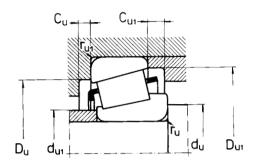
 $P_{0r} = F_r + Y_0 F_a, kN$

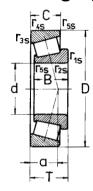

Fa is calculated as in case of equivalent dynamic radial load. The values of Yo are given in bearing tables.

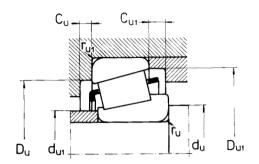

Dime	nsions								Designation	ISO series		radial l	oad. Fa	ctors	
d	D	В	С	Т	r _{1ş} ,r _{2s} min.	r _{3ş} ,r _{4s} min.	r _{s5} min.	a			dyn. Cr	е	Υ	stat. C _{Or}	Y ₀
mm											kN	_		kN	
15	42	13	11	14,25	1	1	0,3	9	30302A	2FB	21,5	0,28	2,1	19,8	1,1
17	40 47 47	12 14 19	11 12 16	13,25 15,25 20,25	1 1 1	1 1 1	0,3 0,3 0,3	10 10 12	30203A 30303A 32303A	2DB 2FB 2FD	18,3 26 34	0,35 0,28 0,28	1,7 2,1 2,1	19 24,5 35,5	0,9 1,1 1,1
20	42 47 52 52	15 14 15 21	12 12 13 18	15 15,25 16,25 22,25	0,6 1 1,5 1,5	0,6 1 1,5 1,5	0,3 0,3 0,6 0,6	10 11 11 14	32004XA 30204A 30304A 32304A	3CC 2DB 2FB 2FD	26 25,8 32 42,5	0,37 0,35 0,3 0,3	1,6 1,7 2 2	28,5 26,4 32 47	0,9 0,9 1,1 1,1
25	47 52 52 62 62	15 15 18 17 17	11,5 13 15 15 13	15 16,25 19,25 18,25 18,25	0,6 1 1 1,5 1,5	0,6 1 1 1,5 1,5	0,3 0,3 0,3 0,6 0,6	11 12 16 13 20	32005XA 30205A 32205A 30305A 31305A	4CC 3CC 2CD 2FB 7FB	26 30,1 31 43 39	0,43 0,37 0,33 0,3 0,83	1,4 1,6 1,8 2 0,7	33,5 32,9 37 43 41	0,8 0,9 1 1,1 0,4
	62	24	20	25,25	1,5	1,5	0,6	15	32305A	2FD	58,3	0,3	2	60,3	1,1
30	55 62 62 72 72	17 16 20 19	13 14 17 16 14	17 17,25 21,25 20,75 20,75	1 1 1 1,5 1,5	1 1 1,5 1,5	0,3 0,3 0,3 0,6 0,6	13 14 15 15 22	32006XA 30206A 32206A 30306A 31306A	4CC 3DB 3DC 2FB 7FB	34 40,5 49 52,9 46,5	0,43 0,37 0,37 0,31 0,83	1,4 1,6 1,6 1,9 0,7	45,5 45,1 61 51,8 49,5	0,8 0,9 0,9 1,1 0,4
	72	27	23	28,75	1,5	1,5	0,6	18	32306A	2FD	75,8	0,31	1,9	82,7	1,1
35	62 72 72 80 80	18 17 23 21 21	14 15 19 18 15	18,25 24,25 22,75 22,75	1 1,5 1,5 2 2	1 1,5 1,5 1,5	0,3 0,6 0,6 0,6 0,6	15 15 17 16 25	32007XA 30207A 32207A 30307A 31307A	4CC 3DB 3DC 2FB 7FB	35,9 50,5 66,2 71,2 58,1	0,46 0,37 0,37 0,31 0,83	1,3 1,6 1,6 1,9 0,7	52,4 54,7 77,5 72,5 64	0,7 0,9 0,9 1,1 0,4
	80	31	25	32,75	2	1,5	0,6	20	32307A	2FE	95,3	0,31	1,9	106	1,1
40	68 80 80 90	19 18 23 23 23	14,5 16 19 20 17	19 19,75 24,75 25,25 25,25	1 1,5 1,5 2 2	1 1,5 1,5 1,5 1,5	0,3 0,6 0,6 0,6 0,6	15 16 19 19 28	32008XA 30208A 32208A 30308A 31308A	3CD 3DB 3DC 2FB 7FB	48,8 57,9 66,2 83,9 74,6	0,37 0,37 0,37 0,35 0,83	1,6 1,6 1,6 1,7 0,7	65,6 62,4 79,5 91,3 60,8	0,9 0,9 0,9 0,9 0,4
	90	33	27	35,25	2	1,5	0,6	23	32308A	2FD	105	0,35	1,7	122	0,9
45	75 85 85 100 100	20 19 23 25 25	15,5 16 19 22 18	20 20,75 24,75 27,25 27,25	1 1,5 1,5 2 2	1 1,5 1,5 1,5 1,5	0,3 0,6 0,6 0,6 0,6	16 18 20 21 31	32009XA 30209A 32209A 30309A 31309A	3CC 3DB 3DC 2FB 7FB	57 60,1 76,5 106 88,9	0,4 0,4 0,4 0,35 0,83	1,5 1,5 1,5 1,7 0,7	82,2 67,1 91,6 118 97,1	0,8 0,8 0,8 0,9 0,4
	100	36	30	38,25	2	1,5	0,6	25	32309A	2FD	133	0,35	1,7	159	0,9
50	80	20	15,5	20	1	1	0,3	18	32010XA	3CC	58,5	0,43	1,4	88,5	8,0

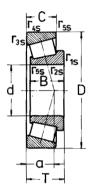

Speed limit		Weight	Mount	ing dime	ensions						
grease	oil		d _{u1} max.	d _u min.	D _u min.	max.	D _{u1} min.	C _u min.	C _{u1} min.	r _u max.	r _{u1} max.
min ⁻¹		kg	mm								
9 000	13 000	0,090	22	21	36	36	38	2	3	1	1
9 000 8 500 8 000	13 000 12 000 11 000	0,074 0,130 0,170	23 25 24	23 23 23	34 40 39	34 41 41	37 42 43	2 2 3	2 3 4	1 1 1	1 1 1
8 500 8 000 8 000 7 500	12 000 11 000 11 000 10 000	0,097 0,120 0,170 0,221	25 27 28 27	25 26 27 27	36 40 44 43	37 41 45 45	39 43 47 47	3 2 2 3	3 3 4	0,6 1 1,5 1,5	0,6 1 1,5 1,5
8 000 7 500 7 500 6 700 5 600	11 000 10 000 10 000 9 000 7 500	0,113 0,150 0,182 0,250 0,255	30 31 31 34 34	30 31 31 32 32	40 44 44 54 47	42 46 46 55 55	44 48 48 57 59	3 2 3 2 3	3,5 3 4 3 5	0,6 1 1 1,5 1,5	0,6 1 1 1,5 1,5
6 000	8 000	0,360	33	32	53	55	57	3	5	1,5	1,5
6 700 6 300 6 300 5 600 5 000	9 000 8 500 8 500 7 500 6 700	0,017 0,220 0,280 0,380 0,390	35 37 37 40 40	36 36 36 37 37	48 53 52 62 55	49 56 56 65 65	52 57 59 66 68	3 2 3 3 3	4 3 4 4,5 6,5	1 1 1 1,5 1,5	1 1 1 1,5 1,5
5 300	7 000	0,550	39	37	59	65	66	4	5,5	1,5	1,5
6 000 5 300 5 300 5 000 4 500	8 000 7 000 7 000 6 700 6 000	0,220 0,320 0,420 0,520 0,520	40 44 43 45 44	41 42 42 44 44	54 62 61 70 62	56 65 65 71 71	59 67 67 74 76	4 3 3 3 4	4 3 5,5 4,5 7,5	1 1,5 1,5 2 2	1 1,5 1,5 1,5 1,5
4 800	6 300	0,730	44	44	66	71	74	4	7,5	2	1,5
5 300 4 800 4 800 4 500 4 000	7 000 6 300 6 300 6 000 5 300	0,270 0,420 0,510 0,700 0,685	46 49 48 52 51	46 47 47 49 49	60 69 68 77 71	62 73 73 81 81	65 74 75 82 86	4 3 3 3 4	4,5 3,5 5,5 5	1 1,5 1,5 2 2	1 1,5 1,5 1,5 1,5
4 000	5 300	0,993	50	49	73	81	82	4	8	2	1,5
4 800 4 500 4 500 4 000 3 400	6 300 6 000 6 000 5 300 4 500	0,330 0,470 0,560 0,920 0,915	51 54 53 59 56	51 52 52 54 54	67 74 73 86 79	69 78 78 91 91	72 80 80 92 95	4 3 3 3 4	4,5 4,5 5,5 5	1 1,5 1,5 2 2	1 1,5 1,5 1,5 1,5
3 600	4 800	1,25	56	54	82	91	93	4	8	2	1,5
4 500	6 000	0,360	56	56	72	74	77	4	4,5	1	1

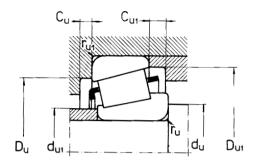

Dime	nsions								Designation	ISO series		radial l	oad. Fa	actors	
d	D	В	С	Т	r ₁₉ ,r _{2s} min.	r ₃₅ ,r _{4s} min.	r _{5ş} min.	a			dyn. Cr	е	Υ	stat. C _{Or}	Y ₀
mm									_		kN	_		kN	_
50	90 90 110 110 110	20 23 27 27 40	17 19 23 19 33	21,75 24,75 29,25 29,25 42,25	1,5 1,5 2,5 2,5 2,5	1,5 1,5 2 2 2	0,6 0,6 0,6 0,6 0,6	19 21 23 34 27	30210A 32210A 30310A 31310A 32310A	3DB 3DC 2FB 7FB 2FD	69,7 79,1 120 102 160	0,43 0,43 0,35 0,83 0,35	1,4 1,4 1,7 0,7 1,7	81,3 95,8 133 112 194	0,8 0,8 0,9 0,4 0,9
55	90 100 100 120 120	23 21 25 29 29	17,5 18 21 25 21	23 22,75 26,75 31,5 31,5	1,5 2 2 2,5 2,5	1,5 1,5 1,5 2 2	0,6 0,6 0,6 0,6 0,6	20 20 22 24 37	32011XA 30211A 32211A 30311A 31311A	3CC 3DB 3DC 2FB 7FB	77 83 96,2 146 118	0,4 0,4 0,4 0,35 0,83	1,5 1,5 1,5 1,7 0,7	117 95,2 115 166 133	0,8 0,8 0,8 0,9 0,4
	120	43	35	45,5	2,5	2	0,6	29	32311A	2FD	191	0,35	1,7	235	0,9
60	95 110 110 130 130	23 22 28 31 31	17,5 19 24 26 22	23,75 23,75 29,75 33,5 33,5	1,5 2 2 3 3	1,5 1,5 1,5 2,5 2,5	0,6 0,6 0,6 1	21 22 24 26 39	32012XA 30212A 32212A 30312A 31312A	4CC 3EB 3EC 2FB 7FB	78,5 91,6 122 164 140	0,43 0,4 0,4 0,35 0,83	1,4 1,5 1,5 1,7 0,7	119 105 152 187 158	0,8 0,8 0,8 0,9 0,4
	130	46	37	48,5	3	2,5	1	31	32312A	2FD	229	0,35	1,7	288	0,9
65	100 120 120 140 140	23 23 31 33 33	17,5 20 27 28 23	23 24,75 32,75 36 36	1,5 2 2 3 3	1,5 1,5 1,5 2,5 2,5	0,6 0,6 0,6 1 1	22 23 27 28 42	32013XA 30213A 32213A 30313A 31313A	4CC 3EB 3EC 2GB 7GB	80,6 111 149 191 164	0,46 0,4 0,4 0,35 0,83	1,3 1,5 1,5 1,7 0,7	123 129 189 220 189	0,7 0,8 0,8 0,9 0,4
	140	48	39	51	3	2,5	1	33	32313A	2GO	256	0,35	1,7	322	0,9
70	110 125 125 150 150	25 24 31 35 35	19 21 27 30 25	25 26,25 33,25 38 38	1,5 2 2 3 3	1,5 1,5 1,5 2,5 2,5	0,6 0,6 0,6 1	23 25 28 29 45	32014XA 30214A 32214A 30314A 31314A	4CC 3EB 3EC 2GB 7GB	95,6 119 157 224 185	0,43 0,43 0,43 0,35 0,83	1,4 1,4 1,4 1,7 0,7	143 143 204 264 215	0,8 0,8 0,8 0,9 0,4
	150	51	42	54	3	2,5	1	36	32314A	2GD	297	0,35	1,7	381	0,9
75	115 130 130 160 160	25 25 31 37 37	19 22 27 31 26	25 27,25 33,25 40 40	1,5 2 2 3 3	1,5 1,5 1,5 2,5 2,5	0,6 0,6 0,6 1 1	25 27 29 31 48	32015XA 30215A 32215A 30315A 31315A	4CC 4DB 4DC 2GB 7GB	97,3 134 157 246 213	0,46 0,43 0,43 0,35 0,83	1,3 1,4 1,4 1,7 0,7	149 166 205 289 251	0,7 0,8 0,8 0,9 0,4
	160	55	45	58	3	2,5	1	38	32315A	2GD	350	0,35	1,7	460	0,9
80	125 140 140 170 170	29 26 33 39 39	22 22 28 33 27	29 28,25 35,25 42,5 42,5	1,5 2,5 2,5 3 3	1,5 2 2 2,5 2,5	0,6 0,6 0,6 1	27 28 30 33 52	32016XA 30216A 32216A 30316A 31316A	3CC 3EB 3EC 2GB 7GB	130 145 180 277 222	0,43 0,43 0,43 0,35 0,83	1,4 1,4 1,4 1,7 0,7	198 177 232 329 275	0,8 0,8 0,8 0,9 0,4


Speed limit		Weight	Mount	ing dime	ensions						
grease	oil		d _{u1} max.	d _u min.	D _u min.	max.	D _{u1} min.	C _u min.	C _{u1} min.	r _u max.	r _{u1} max.
min ⁻¹		kg	mm								
4 300	5 600	0,530	58	57	79	83	85	3 3	4,5	1,5 1,5 2,5	1,5
4 300	5 600	0,600	58	57	78	83	85	3	5,5	1,5	1,5
3 600	4 800	1,19	65	60	95	100	102	4	6	2,5	2
3 200	4 300 4 300	1,16	62 62	60 60	87 90	100	104	4 5	10 9	2,5 2,5	2 2 2
3 200	4 300	1,83	62	60	90	100	102	5	-	2,5	2
4 000	5 300	0,540	63	62	81	83	86	4	5,5 4,5 5,5 6,5 10,5	1,5 1,5 1,5	1.5
3 800	5 000	0,690 0,820	64	64 64	88	91	94	4	4.5	1,5	1,5 1,5 1,5
3 800	5 000	0,820	63	64	87	91	95	4	5,5	1,5	1,5
3 200	4 300	1,53	71	65	104	110	111	4	6,5	2	2 2
2 800	3 800	1,49	68	65	94	110	113	4	10,5	2	2
3 000	4 000	2,21	68	65	99	110	111	5	10,5	2	2
3 800	5 000	0.580	67	67	85	88	91	4	5.5	1,5	15
3 400	4 500	0,860	70	69	96	101	103	4	4.5	2,3	1,5 1,5
3 400	4 500	1,10	69	69	95	101	104	4	5.5	2 2 3 3	1.5
3 000	4 000	1.90	77	72	112	118	120	5	7.5	3	2.5
2 600	3 600	1,83	77 73	72 72	103	118	123	4 5 5	5,5 4,5 5,5 7,5 11,5	š	1,5 2,5 2,5 2,5
2 600	3 600	2,80	74	72	107	118	120	6	11,5	3	2,5
3 400	4 500	0,620	72	72	90	93	97	4	5.5	1,5	1.5
3 000	4 000	1,10	72 77	72 74	106	111	113	4 4 4	4.5	3,3	1,5
3 000	4 000	1,48	76	74	104	111	115	Ä	55	5	1,5
2 600	3 600	2,30	83	77	122	128	130	5	5,5 4,5 5,5 8	2 2 3	25
2 200	3 200	2,25	79	77	111	128	132	5	13	3	1,5 1,5 1,5 2,5 2,5
2 400	3 400	3,49	80	77	117	128	130	6	12	3	2,5
3 200	4 300	0,830 1,22 1,56	78	77 79	98	103	105	5	6 5 6 8	1,5	1,5
3 000	4 000	1,22	81 80	79	110	116	118	4	5	2	1,5
2 800 2 400	3 800 3 400	1,56 3,00	80 89	79 82	108 130	116 138	119 140	4	Ö	2 3	1,2
2 400 2 000	3 400	3,00 2,82	89 84	82 82	118	138	140	5 4 4 5 5	13	3	1,5 1,5 1,5 2,5 2,5
										-	
2 200	3 200	4,10	86	82	125	138	140	6	12	3	2,5
3 000	4 000	0,880	83	82	103	108	110	5	6	1,5	1,5
2 800	3 800	1.33	86	84	115	121	124	4	5		1,5
2 600	3 600	2,62	85	84	115	121	124	4 5	5 6 9	2 2 3	1,5 1,5
2 600	3 600	3,40	95	87	139	148	149	5	9	3	2,5 2,5
1 900	2 800	3,50	91	87	127	148	151	6	14	3	2,5
2 000	3 000	5,00	91	87	133	148	149	7	13	3	2,5
2 600	3 600	1,24	89	87	112	117	120	6	7	1,5	1,5
2 400	3 400	1,59	91	90	124	130	132		6	2.5	2
2 400 2 400	3 400	2,00	90	90	124 122	130	134	4 5 5	6 7	2.5	2
2 000	3 000	4.00	102	92	148	158	159	5	9.5	2,5 2,5 3	2 2 2,5 2,5
1 900	2 800	4,07	97	92	134	158	159	6	15.5	3	2.5

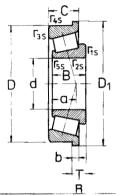

Dime	nsions								Designation	ISO	Basic	radial l	oad. Fa	actors	
d	D	В	c	Т	r ₁₉ ,r _{2s} min.	r _{3şı} r _{4s} min.	r5 min.	а			dyn. Cr	е	Υ	stat. C _{Or}	Y ₀
mm									_		kN	_		kN	_
80	170	58	48	61,5	3	2,5	1	41	32316A	2GD	383	0,35	1,7	503	0,9
85	130 150 150 180 180	29 28 36 41 41	22 24 30 34 28	29 30,5 38,5 44,5 44,5	1,5 2,5 2,5 4 4	1,5 2 2 3 3	0,6 0,6 0,6 1	28 30 33 35 55	32017XA 30217A 32217A 30317A 31317A	4CC 3EB 3EC 2GB 7GB	136 167 213 298 245	0,44 0,43 0,43 0,35 0,83	1,4 1,4 1,7 0,7	213 206 283 354 298	0,8 0,8 0,8 0,9 0,4
	180	60	49	63,5	4	3	1	42	32317A	2GD	400	0,35	1,7	555	0,9
90	140 160 160 190 190	32 30 40 43 43	24 26 34 36 30	32,5 32,5 42,5 46,5 46,5	2 2,5 2,5 4 4	1,5 2 2 3 3	0,6 0,6 0,6 1	30 31 36 36 57	32018XA 30218A 32218A 30318A 31318A	3CC 3FB 3FC 2GB 7GB	159 190 251 328 270	0,43 0,43 0,43 0,35 0,83	1,4 1,4 1,4 1,7 0,7	246 238 340 394 330	0,8 0,8 0,8 0,9 0,4
	190	64	53	67,5	4	3	1	44	32318A	2GD	461	0,35	1,7	612	0,9
95	145 170 170 200 200	32 32 43 45 45	24 27 37 38 32	32 34,5 45,5 49,5 49,5	2 3 4 4	1,5 2,5 2,5 3 3	0,6 1 1 1 1	31 33 39 39 60	32019XA 30219A 32219A 30319A 31319A	4CC 2FB 3FC 2GB 7GB	163 210 281 350 300	0,44 0,43 0,43 0,35 0,83	1,4 1,4 1,7 0,7	257 264 390 449 365	0,8 0,8 0,8 0,9 0,4
	200	67	55	71,5	4	3	1	47	32319A	2GD	500	0,35	1,7	670	0,9
100	150 180 180 215 215	32 34 46 47 73	24 29 39 39 60	32 37 49 51,5 77,5	2 3 4 4	1,5 2,5 2,5 3 3	0,6 1 1 1	32 35 41 40 53	32020XA 30220A 32220A 30320A 32320A	4CC 3FB 3FC 2GB 2GD	171 238 320 404 578	0,46 0,43 0,43 0,35 0,35	1,3 1,4 1,4 1,7 1,7	277 303 444 492 780	0,7 0,8 0,8 0,9 0,9
105	160 190 190 225	35 36 50 77	26 30 43 63	35 39 53 81,5	2,5 3 3 4	2 2,5 2,5 3	0,6 1 1 1	34 37 44 53	32021XA 30221A 32221A 32321A	4DC 3FB 3FC 2GD	204 270 358 405	0,44 0,43 0,43 0,35	1,4 1,4 1,4 1,7	334 350 510 815	0,8 0,8 0,8 0,9
110	170 200 200 240 240	38 38 53 50 80	29 32 46 42 65	38 41 56 54,5 84,5	2,5 3 3 4 4	2 2,5 2,5 3 3	0,6 1 1 1	36 39 46 43 55	32022XA 30222A 32222A 30322A 32322A	4DC 3FB 3FC 2GB 2GD	235 304 406 479 699	0,43 0,43 0,43 0,35 0,35	1,4 1,4 1,4 1,7 1,7	382 396 580 588 956	0,8 0,8 0,8 0,9 0,9
120	180 215 215 260 260	38 40 58 55 86	29 34 50 46 69	38 43,5 61,5 59,5 90,5	2,5 3 3 4 4	2 2,5 2,5 3 3	0,6 1 1 1	39 43 51 47 60	32024XA 30224A 32224A 30324A 32324A	4DC 4FB 4FD 2GB 2GD	238 340 446 568 799	0,46 0,43 0,43 0,35 0,35	1,3 1,4 1,4 1,7 1,7	397 459 653 712 1104	0,7 0,8 0,8 0,9 0,9
130	200 230 230	45 40 64	34 34 54	45 43,75 67,75	2,5 4 4	2 3 3	0,6 1 1	42 45 56	32026XA 30226A 32226A	4EC 4FB 4FD	315 367 551	0,43 0,43 0,43	1,4 1,4 1,4	526 485 836	0,8 8,0 8,0


Speed limit		Weight	Mount	ing dime	nsions						
grease	oil		d _{u1} max.	d _ų min.	D _u min.	max.	D _{u1}	C _u min.	C _{u1} min.	r _u max.	ru1 max.
min ⁻¹		kg	mm								
1 900	2 800	5,90	98	92	142	158	159	7	13,5	3	2,5
2 400 2 200 2 200 1 900 1 800	3 400 3 200 3 200 2 800 2 600	1,30 2,00 2,50 4,70 5,08	94 97 96 107 103	92 95 95 99 99	117 132 130 156 143	122 140 140 166 166	125 141 142 167 169	6 5 5 6 6	7 6,5 8,5 10,5 16,5	1,5 2,5 2,5 4 4	1,5 2 2 2 3 3
1 800	2 600	6,85	103	99	150	166	167	8	14,5	4	3
2 200 2 200 2 000 1 700 1 700	3 200 3 000 3 000 2 400 2 400	1,70 2,49 3,30 5,50 5,92	100 103 102 113 109	99 100 100 104 104	125 140 138 165 151	131 150 150 176 176	134 150 152 176 179	6 5 5 6	8 6,5 8,5 10,5 16,5	2 2,5 2,5 4 4	1,5 2 2 3 3
1 700	2 400	8,21	108	104	157	176	177	8	14,5	4	3
2 200 1 900 1 900 1 800 1 700	3 200 2 800 2 800 2 600 2 400	1,80 2,96 4,00 6,70 6,95	105 110 108 118 114	104 107 107 109 109	130 149 145 172 157	136 158 158 186 186	140 159 161 184 187	6 5 5 6	8 7,5 8,5 11,5 17,5	2 3 4 4	1,5 2,5 2,5 3 3
1 700	2 400	11,0	115	109	166	186	186	8	16,5	4	3
2 000 1 900 1 800 1 700 1 600	3 000 2 800 2 600 2 400 2 200	1,85 3,54 4,76 7,90 14,0	109 116 114 127 123	109 112 112 114 114	134 157 154 184 177	141 168 168 201 201	144 168 171 197 200	6 5 5 6 8	8 8 10 12,5 17,5	2 3 3 4 4	1,5 2,5 2,5 3 3
1 900 1 800 1 800 1 500	2 800 2 600 2 600 2 000	2,42 4,26 5,90 14,5	116 122 120 128	115 117 117 119	143 165 161 185	150 178 178 211	154 177 180 209	6 6 5 9	9 9 10 18,5	2,5 3 3 4	2 2,5 2,5 3
1 800 1 700 1 700 1 600 1 400	2 600 2 400 2 400 2 200 1 900	3,06 5,00 6,90 12,5 16,4	122 129 126 141 137	120 122 122 124 124	152 174 170 206 198	160 188 188 226 226	163 187 190 220 222	7 6 6 8 9	9 9 10 12,5 19,5	2,5 3 3 4 4	2,5 2,5 3 3
1 700 1 600 1 600 1 500 1 300	2 400 2 200 2 200 2 000 1 800	3,25 6,01 8,59 13,6 24,5	131 140 136 152 148	130 132 132 134 134	161 187 181 221 213	170 203 203 246 246	173 201 204 237 239	7 6 7 10 9	9 9,5 11,5 13,5 21,5	2,5 3 3 4 4	2 2,5 2,5 3 3
1 600 1 500 1 500	2 200 2 000 2 000	4,93 7,60 10,7	144 152 146	140 144 144	178 203 193	190 216 216	192 217 219	8 7 7	11 9,5 13,5	2,5 4 4	2 3 3

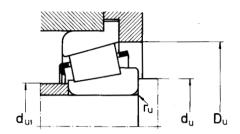

Dime	nsions								Designation	ISO series		radial l	oad. Fa	ctors	
d	D	В	С	T	rış,r _{2s} min.	r ₃₅ ,r _{4s} min.	r ₅ min.	а		0020	dyn. Cr	е	Υ	stat. Cor	Y ₀
mm									_		kN	-,		kN	_
130	280 280 280	58 66 93	49 44 78	63,75 72 98,75	5 5 5	4 4 4	1,5 1,5 1,5	51 87 66	30326A 31326XA 32326A	2GB 7GB	640 597 947	0,35 0,83 0,35	1,7 0,7 1,7	820 761 1333	0,9 0,4 0,9
140	210 250 250 300	45 42 68 70	34 36 58 47	45 45,75 71,75 77	2,5 4 4 5	2 3 3 4	0,6 1 1 1,5	46 47 60 90	32028XA 30228A 32228A 31328XA	4DC 4FB 4FD 7GB	312 396 602 714	0,46 0,43 0,43 0,83	1,3 1,4 1,4 0,7	529 527 907 935	0,7 0,8 0,8 0,4
150	225 270 270	48 45 73	36 38 60	48 49 77	3 4 4	2,5 3 3	1 1 1	49 50 64	32030XA 30230A 32230A	4EC 4GB 4GD	355 457 705	0,46 0,43 0,43	1,3 1,4 1,4	620 618 1 080	0,7 0,8 0,8
160	240 290 290	51 48 80	38 40 67	51 52 84	3 4 4	2,5 3 3	1 1 1	52 54 70	32032XA 30232A 32232A	4EC 4GB 4GD	402 520 840	0,46 0,43 0,43	1,3 1,4 1,4	696 710 1 400	0,7 0,8 0,8
170	230 260 310 310	38 57 52 86	30 43 43 71	38 57 57 91	2,5 3 5 5	2 2,5 4	0,6 1 1,5 1,5	42 56 58 75	32934A 32034XA 30234A 32234A	3DC 4EC 4GB 4GD	280 480 610 889	0,37 0,44 0,43 0,43	1,6 1,4 1,4 1,4	572 865 844 1 377	0,9 0,8 0,8 0,8
180	250 280 320 320	45 64 52 86	34 48 43 71	45 64 57 91	2,5 3 5 5	2 2,5 4 4	0,6 1 1,5 1,5	53 59 61 78	32936A 32036XA 30236A 32236A	4DC 3FD 4GB 4GD	350 599 584 974	0,48 0,43 0,46 0,46	1,3 1,4 1,3 1,3	727 1 037 825 1 571	0,7 0,8 0,7 0,7
190	260 290 340	45 64 92	34 48 75	45 64 97	2,5 3 5	2 2,5 4	0,6 1 1,5	55 62 81	32938A 32038XA 32238A	4DC 4FD 4GD	358 609 1 080	0,48 0,44 0,43	1,3 1,4 1,4	772 1 077 1860	0,7 0,8 0,8
200	280 310 310 310 360	51 70 70 70 98	39 53 53 53 82	51 70 70 70 70 104	3 3 3 5	2,5 2,5 2,5 2,5 4	1 1 1 1 1,5	53 66 66 66 83	32940A 32040XA T-32040X T-32040XP5 32240A	3EC 4FD 4FD 4FD 3GD	474 716 716 716 1 220	0,4 0,43 0,43 0,43 0,4	1,5 1,4 1,4 1,4 1,5	950 1 356 1 356 1 356 2 020	0,8 0,8 0,8 0,8 0,8
220	300 340 340 340	51 76 76 76	39 57 57 57	51 76 76 76	3 4 4 4	2,5 3 3 3	1 1 1 1	58 72 72 72	32944M 32044XA T-32044X T-32044XP5	3EC 4FD 4FD 4FD	407 850 850 850	0,43 0,43 0,43 0,43	1,4 1,4 1,4 1,4	827 1 537 1 537 1 537	0,8 0,8 0,8 0,8
240	360 360 360 360 440	76 76 76 76 120	57 57 57 57 100	76 76 76 76 127	4 4 4 5	3 3 3 4	1 1 1 1 1,5	78 78 78 78 78 105	32048XA T-32048XM T-32048XMP5 T-32048XMP6 T-32248	4FD 4FD 4FD 4FD	870 804 804 804 1 750	0,46 0,46 0,46 0,46 0,43	1,3 1,3 1,3 1,3 1,4	1 690 1 447 1 447 1 447 2 869	0,7 0,7 0,7 0,7 0,8
260	400	87	65	87	5	4	1,5	84	32052XA	4FC	1 153	0,43	1,4	2 141	8,0
280	420	87	65	87	5	4	1,5	89	32056XA	4FC	1 150	0,46	1,3	2 250	0,7


Speed limit	l	Weight	Mount	ing dime	nsions						
grease	oil		d _{u1} max.	d _u min.	D _u min.	max.	D _{u1} min.	C _u min.	C _{u1} min.	r _u max.	r _{u1} max.
min ⁻¹		kg	mm								
1 300 1 200 1 100	1 800 1 700 1 600	19,5 18,6 27,6	164 157 160	148 148 148	239 218 230	262 262 262	255 261 260	8 9 10	14,5 28 20,5	5 5 5	4 4 4
1 600 1 400 1 400 1 200	2 200 1 900 1 900 1 700	5,23 8,50 13,9 23,9	153 163 159 169	150 154 154 158	187 219 210 235	200 236 236 282	202 234 238 280	8 9 8 9	11 9,5 13,5 30	2,5 4 4 5	2 3 4
1 500 1 300 1 200	2 000 1 800 1 700	6,35 10,7 17,9	164 175 171	162 164 164	200 234 226	213 256 256	216 250 254	8 9 8	12 11 17	3 4 4	2,5 3 3
1 300 1 100 1 100	1 800 1 600 1 600	7,75 13,6 25,5	175 189 183	172 174 174	213 252 242	228 276 276	231 269 274	8 9 10	13 12 17	3 4 4	2,5 3 3
1 400 1 200 1 000 1 000	1 900 1 700 1 500 1 500	4,50 10,5 19,0 29,3	183 187 203 196	180 182 188 188	213 230 269 259	220 248 292 292	222 249 288 294	7 10 8 10	8 14 14 20	2,5 3 5 5	2 2,5 4 4
1 200 1 100 1 000 950	1 700 1 600 1 500 1 400	6,65 14,5 20,0 27,4	193 199 211 204	190 192 198 198	225 247 278 267	240 268 302 302	241 267 297 303	8 10 9 10	11 16 14 20	2,5 3 5 5	2 2,5 4 4
1 100 1 000 900	1 600 1 500 1 300	7,00 15,0 39,5	204 209 216	200 202 207	235 257 286	249 278 322	251 279 323	8 10 10	11 16 22	2,5 3 5	2 2,5 4
1 000 950 950 950 950 900	1 500 1 400 1 400 1 400 1 300	9,50 19,5 19,5 19,5 33,0	216 221 221 221 226	212 212 212 212 217	257 273 273 273 273 302	268 298 298 298 342	271 297 297 297 340	9 11 11 11	12 17 17 17 22	3 3 3 5	2,5 2,5 2,5 2,5 4
950 900 900 900	1 400 1 300 1 300 1 300	11,2 25,5 25,5 25,5	234 243 243 243	232 234 234 234	275 300 300 300	288 326 326 326	290 326 326 326	9 12 12 12	12 19 19 19	3 4 4 4	2,5 3 3 3
850 850 850 850 750	1 200 1 200 1 200 1 200 1 000	27,5 26,5 26,5 26,5 81,0	261 261 261 261 276	254 254 254 254 258	318 318 318 318 365	346 346 346 346 422	346 346 346 346 415	12 12 12 12 14	19 19 19 19 27	4 4 4 4 5	3 3 3 4
800	1 100	40,0	287	278	352	382	383	14	22	5	4
750	1 000	40,5	305	298	370	402	402	14	22	5	4

Dime	nsions								Designation	ISO series	Basic	radial i	oad. Fa	ctors	
d	D	В	С	T	r _{1\$} ,r _{2s} min.	r _{3ş,} r _{4s} min.	r ₅ min.	a		301143	dyn. Cr	е	Y	stat. C _{0r}	Y ₀
mm									_		kN			kN	_
300	420 420 540	76 76 85	57 57 71	76 76 96	4 4 6	3 3 5	1 1 1,5	65 65 103	T-32960M T-32960MP5 T-30260	3FD 3FD 4GB	1 006 1 006 1 350	0,29 0,29 0,43	2,1 2,1 1,4	1 973 1 973 1 900	1,1 1,1 0,8
320	480	100	74	100	5	4	1,5	103	T-32064X	4GD	1 535	0,46	1,3	2 935	0,7
360	480 480	76 76	57 57	76 76	4 4	3 3	1	77 77	T-32972 T-32972P5	4FD 4FD	1 130 1 130	0,31 0,31	1,9 1,9	2 411 2 411	1,1 1,1

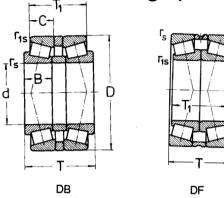


Speed limit				t Mounting dimensions									
grease	oil		d _{u1} max.	d _u min.	D _u min.	max.	D _{u1} min.	C _u min.	C _{u1} min.	ru max.	ru1 max.		
min ⁻¹		kg	mm										
700 700 600	950 950 800	31,5 31,5 86,0	324 324 352	314 314 321	383 383 468	406 406 519	405 405 500	12 12 12	19 19 25	4 4 6	3 3 5		
630	85	63,0	350	338	424	462	461	15	26	5	4		
600 600	800 800	40,5 40,5	380 380	374 374	439 439	466 466	466 466	14 14	19 19	4	3 3		

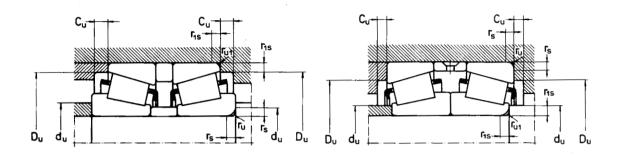


Single-row tapered roller bearings with flanged outer ring (Metric Series)

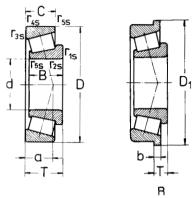
Dime	nsions									Designation	ISO series
d	D	В	С	Т	r _{1ş,} r2s min.	rg _s ,r4s min.	D ₁	. b	a		
mm										_	
20	47	14	12	6,25	1	1	51	3	11	30204AR	2DB
25	52	15	13	6,25	1	1	57	3,5	12	30205AR	3CC
30	62 62 72 72	16 20 19 27	14 17 16 23	6,75 8,25 8,75 11,75	1 1,5 1,5	1 1 1,5 1,5	67 67 77 77	3,5 4 4 6	14 15 15 18	30206AR 32206AR 30306AR 32306AR	3DB 3DC 2FB 2FD
35	72 72 80 80	17 23 21 31	15 19 18 25	7,25 10,25 8,25 13,75	1,5 1,5 2 2	1,5 1,5 1,5 1,5	77 77 85 85	4 4,5 4,5 6	15 17 16 20	30207AR 32207AR 30307AR 32307AR	3DB 3DC 2FB 2FE
40	80 80 90 90	18 23 23 33	16 19 20 27	7,75 10,25 9,75 14,25	1,5 1,5 2 2	1,5 1,5 1,5 1,5	85 85 95 95	4 4,5 4,5 6	16 19 19 23	30208AR 32208AR 30308AR 32308AR	3DB 3DC 2FB 2FD
45	85 85 100 100	19 23 25 36	16 19 22 30	8,75 10,25 10,25 15,25	1,5 1,5 2 2	1,5 1,5 1,5 1,5	90 90 106 106	4 4,5 5 7	18 20 21 25	30209AR 32209AR 30309AR 32309AR	3DB 3DC 2FB 2FD
50	90 90 110 110	20 23 27 40	17 19 23 33	8,75 10,25 11,25 17,25	1,5 1,5 2,5 2,5	1,5 1,5 2 2	95 95 116 116	4 4,5 5 8	19 21 23 27	30210AR 32210AR 30310AR 32310AR	3DB 3DC 2FB 2FD
55	100 100 120	21 25 43	18 21 35	9,25 10,75 18,5	2 2 2,5	1,5 1,5 2	106 106 127	4,5 5 8	20 22 29	30211AR 32211AR 32311AR	3DB 3DC 2FD
60	110 110 130	22 28 46	19 24 37	9,25 10,75 19,5	2 2 3	1,5 1,5 2,5	116 116 137	4,5 5 8	22 24 31	30212AR 32212AR 32312AR	2EB 2EC 2FD
65	120 120	23 31	20 27	9,25 11,75	2 2	1,5 1,5	127 127	4,5 6	23 27	30213AR 32213AR	3EB 3EC
70	125 125	24 31	21 27	10,25 12,25	2	1,5 1,5	132 132	5 6	25 28	30214AR 32214AR	3EB 3EC



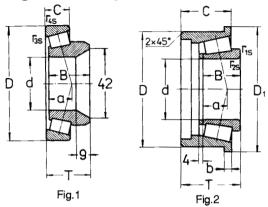
Basic	radial loa	d. Factors	3		Speed li	imit	Weight	Mounti	ng dimen	sions	
dyn. Cr	ө	Υ	stat. C _{Or}	Y ₀	grease	oil		d _{u1} max.	d _u min.	D _u min.	r _u max.
kN			kN	_	min ⁻¹		kg	mm			
26	0,35	1,7	29	0,9	8 000	11 000	0,127	27	26	43	1
29,5	0,37	1,6	36	0,9	7 500	10 000	0,161	31	31	48	1
38	0,37	1,6	48	0,9	6 300	8 500	0,233	37	36	57	1
47,5	0,37	1,6	65	0,9	6 300	8 500	0,290	37	36	59	1
53	0,31	1,9	65	1,1	5 600	7 500	0,398	39	37	66	1,5
72,3	0,31	1,9	97	1,1	5 300	7 000	0,577	40	37	66	1,5
49,4	0,37	1,6	58	0,9	5 300	7 000	0,338	44	42	67	1,5
61,6	0,37	1,6	80	0,9	5 300	7 000	0,422	43	42	67	1,5
68,2	0,31	1,9	83	1,1	5 000	6 700	0,543	45	44	74	2
88,2	0,31	1,9	120	1,1	4 800	6 300	0,760	44	44	74	2
58,5	0,37	1,6	70	0,9	4 800	6 300	0,440	49	47	74	1,5
71	0,37	1,6	95	0,9	4 800	6 300	0,533	48	47	75	1,5
81	0,35	1,7	105	0,9	4 500	6 000	0,725	52	49	82	2
110	0,35	1,7	156	0,9	4 000	5 300	1,027	50	49	82	2
63	0,4	1,5	83	0,8	4 500	6 000	0,491	54	52	80	1,5
75	0,4	1,5	103	0,8	4 500	6 000	0,584	53	52	80	1,5
101	0,35	1,7	130	0,9	4 000	5 300	0,958	59	54	92	2
132	0,35	1,7	188	0,9	3 600	4 800	1,30	56	54	93	2
70,5	0,43	1,4	95	0,8	4 300	5 600	0,552	58	57	85	1,5
76,5	0,43	1,4	106	0,8	4 300	5 600	0,625	58	57	85	1,5
120	0,35	1,7	156	0,9	3 600	4 800	1,23	65	60	102	2,5
165	0,35	1,7	239	0,9	3 200	4 300	1,89	62	60	102	2,5
84,5	0,4	1,5	112	0,8	3 800	5 000	0,724	64	64	94	1,5
99	0,4	1,5	138	0,8	3 800	5 000	0,858	63	64	95	1,5
187	0,35	1,7	276	0,9	3 000	4 000	2,29	68	65	111	2
91,5	0,4	1,5	122	0,8	3 400	4 500	0,897	70	69	103	2
120	0,4	1,5	170	0,8	3 400	4 500	1,14	69	69	104	2
216	0,35	1,7	318	0,9	2 600	3 600	1,92	74	72	120	3
110	0,4	1,5	147	8,0	3 000	4 000	1,14	77	74	113	2
142	0,4	1,5	206	8,0	3 000	4 000	1,54	76	74	115	
120	0,43	1,4	163	8,0	3 000	4 000	1,27	81	79	118	2 2
150	0,43	1,4	220	8,0	2 800	3 800	1,62	80	79	119	



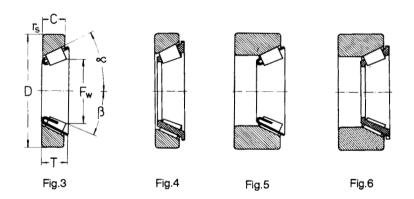
Single-row tapered roller bearings (Paired mounting)


Dime	nsions							Designation	Speed li	mit	Weight
d 	D	В	С	Т	Т1	r _s min.	r _{1ş} min.		grease	oil	
mm								_	min ⁻¹		kg
45	85 85	21 23	19 19	57,5 55	46 43,5	1,5 1,5	0,6 0,6	32209AP2F2DBT57,5 32209AP4DBT55	3 600 3 600	4 800 4 800	1,28 1,26
55	100 100	22,52 25	21 21	69,5 69,5	57,66 58	2	0,6 0,6	32211AP2F2DBT69,5 32211AUPDBT69,5	3 000 3 000	4 000 4 000	2,06 1,15
70 80	110 125	25 29	19 22	58 70	46 56	1,5 1,5	0,5 0,6	32014XADBT58 32016XADBT70	2 600 2 000	3 400 2 800	1,87 3,08
90	140	32	24	75	59	2	0,6	32018XADBT75	1 800	2 600	3,95
100	180	46	39	140	120	3	8,0	32220AS1DBT140	1 400	2 000	12,6
110	200 240	52,5 50	46 42	112 109	105 100	0,6 1	2,5 3	32222ADFT112 30322ADFT109	1 400 1 300	1 900 1 800	7,77 12,6
120	215 260 260	58 55 86	50 46 69	123 119 181	116 110 172	0,6 1 1	2 3 3	32224ADFTT123 30324ADFT119 32324ADFT181	1 300 1 200 1 000	1 800 1 600 1 400	18,7 29,8 46,2
130	200 230 280	45 64 66	34 54 45	90 135,5 144	90 128 132	0,6 1 2	2 3 4	32026XAP5S0DFT90 32226ADFT135,5 31326ADFT144	1 300 1 200 950	1 800 1 600 1 400	10,6 23,1 40,5
140	250	68	58	163,5	136	3	1	32228ADBT164	1 100	1 500	30,9
170	310 310	86 86	71 71	202 202	162 162	5 5	1,5 1,5	32234AMDBT202 32234AMP5DBT202	800 800	1 200 1 200	64,1 64,1

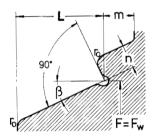
Basic	radial loa	d. Factors	3			Mountin	g dimen	sions			
dyn. Cr	е	Y ₁	Y2	stat. Cor	Y ₀	d _ų min./me	D _u c. min.	max.	C _u min.	r _u max.	r _{u1} max.
kN	_			kN	_	mm					
125 125	0,4 0,4	1,7 1,7	2,5 2,5	185 185	1,6 1,6	52 52	80 80		5,5 5,5	1,5 1,5	0,6 0,6
155 155	0,4 0,4	1,7 1,7	2,5 2,5	230 230	1,6 1,6	64 64	95 95		5,5 5,5	1,5 1,5	0,6 0,6
155	0,43	1,6	2,3	285	1,6	77	105		6	1,5	0,6
210	0,43	1,6	2,3	395	1,6	87	120		7	1,5	0,6
260	0,43	1,6	2,3	490	1,6	99	134		8	2	0,6
520	0,43	1,6	2,3	890	1,6	112	171		10	3	1
660 780	0,43 0,35	1,6 1,9	2,3 2,8	1 160 1 180	1,6 1,8	126 141	170 206	188 226	6 8	2,5 3	1
720 920 1 29 0	0,43 0,35 0,35	1,6 1,9 1,9	2,3 2,8 2,8	1 310 1 420 2 210	1,6 1,8 1,8	136 152 148	181 221 213	203 246 246	7 10 9	2,5 3 3	1
510 890 970	0,43 0,43 0,83	1,6 1,6 0,8	2,3 2,3 1,2	1 050 1 670 1 520	1,6 1,6 0,8	144 146 157	178 193 218	190 216 262	8 7 9	2 3 4	0,6 1 1,5
980	0,43	1,6	2,3	1 810	1,6	154	238		13,5	4	1
1 440 1 440	0,43 0,43	1,6 1,6	2,3 2,3	2 750 2 750	1,6 1,6	188 188	294 294		20 20	5 5	1,5 1,5



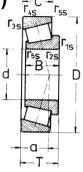
104 3/21 005 2/37A
3/21 005 2/37A
3/21 005 2/37A
005 2/37A
2/37A
108
3/42R
409
110
513 913
014
015
023
128R
052F
34156
34084
34092 34092P5 34092MP5
340/710
014 015 02: 120 052 341 340 340

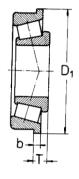


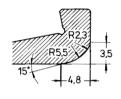
Basic r	adial load	. Factors			Speed li	mit	Weight	Equivalence	
dyn. Cr	е	Υ	stat. C _{Or}	Y ₀	grease	oil		Designation	
kN			kN	_	min ⁻¹		kg		
18,3	0,35	1,7	19	0,9	8 000	11 000	0,125		
33,5	0,83	0,7	30,2	0,4	6 000	8 500	0,276		
30,1	0,37	1,6	32,9	0,9	6 300	9 000	0,144	10R30205A	
49,4	0,37	1,6	58	0,9	4 500	6 300	0,320		
48,8	0,35	1,7	67,8	0,9	4 500	6 300	0,244		
121	0,35	1,7	170	1	3400	5 000	1,45		
52,5	0,4	1,5	73,7	8,0	4 000	5 600	0,296		
152	0,8	8,0	160	8,0	2 800	4 000	1,87		
106 149	0,4 0,4	1,5 1,5	154 189	8,0 8,0	2 800 2 600	4 000 3 800	0,960 1,65	807813	
156	0,39	1,5	232	8,0	2 600	3 600	1,98		
183	0,44	1,4	278	0,7	2 400	3 400	2,68	7815	
300	0,5	1,2	450	0,7	1 600	2 200	5,07	7723	
419	0,4	1,5	678	8,0	1 300	1 900	9,20	67728K	
1 740	0,25	2,4	2 370	1,3	600	900	11,0	7352	
1 200	0,35	1,7	2 173	0,9	700	1 000	48,0	2007156	
1 863	0,4	1,5	3 455	8,0	480	670	96,5	7184	
1 370 1 370 1 370	0,4 0,4 0,4	1,5 1,5 1,5	2 850 2 850 2 850	0,8 0,8 0,8	450 450 450	630 630	62,5 62,5 62,5	1007992	
2 865	0,43	1,4	6 123	0,8	300	430	204	10079/710	


Dimer	sions									Designation
d 	D	В	С	т	r _{1s} ,r _{2s} min.	r _{3ş,} r _{4s} min.	D ₁	b	a	
mm										_
32	72	28,5	15	30		1			21	34305
75	150	51	67	22,5	3		165	10	61	34215R

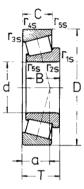
Dimens	ions					Designation	Basic ra	dial load	. Factors	3	
F _w	D	C	т	r _s min.	α		dyn. Cr	е	Υ	stat. C _{0r}	Yo
mm					degrees	-	kN			kN	_
28,313	44,475 49,171	9,525 19,05	10,063 19,468	1,6 2,8	17°43' 17 43'	R34006 R34106	18,6 18,6	0,48 0,48	1,3 1,3	18 18	0,7 0,7
33,02	49,25	11	12,4	1	20	R34007	21,32	0,55	1,1	22,4	0,6
46,673	72 72	17,2 17,2	14 14	1,5 1,5	27 27	R34309 R34309TN	40,7 40,7	0,76 0,76	8,0 8,0	40,8 40,8	0,4 0,4
56,469	79,39 79,39 87,325 87,325	13,2 13,2 25,7 25,7	14,605 14,605 27,2 27,2	1 1 1	26 26 26 26	R34111 R34111TN R34211 R34211TN	35,8 35,8 35,8 35,8	0,73 0,73 0,73 0,73	0,8 0,8 0,8 0,8	44,7 44,7 44,7 44,7	0,5 0,5 0,5 0,5

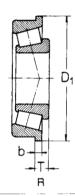



Basic ra	dial load. Fa	ctors			Speed lin	nit	Weight	Fig.
dyn. Cr	е	Υ	stat. Cor	Y ₀	grease	oil		
kN		. 10	kN		min ⁻¹		kg	
50,5	0,37	1,6	54,7	0,9	5 000	6 700	0,45	1
297	0,35	1,7	381	1	2 200	3 200	5,13	2

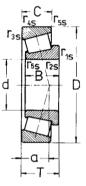


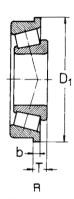
Speed lim	nit	Weight	Fig.	Mounting dimensions					
grease	oil			L	n	m	β	ro	
min ⁻¹	mm	kg	_	mm			degrees	mm	
7 500 7 000	11 000 10 000	0,196 0,284	3 5	7,854 7,854	1,727 1,727	3,43 3,43	12°42' 12°42'	0,5 0,5	
6 700	9 500	0,086	3	8,1	1,7	3	14°59'	1,5	
4 800 4 800	7 000 7 000	0,055 0,042	3 4	13 13	3,2 3,2	5 5	19 19	2 2	
4 000 4 000 3 800 3 800	6 000 6 000 5 600 5 600	0,248 0,233 0,648 0,625	3 4 5 6	11,1 11,1 11,1 11,1	2,8 2,8 2,8 2,8	3,5 3,5 3,5 3,5	20°48' 20°48' 20°48' 20°48'	1,5 1,5 1,5 1,5	



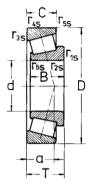

Dimens	ions									Designation
d	D	В	С	T	r _{1ş} ,r _{2ş} min.	r3s,r4s min.	D_1	b	а	
mm										_
11,112	34,988	10,988	8,73	10,998	1,3	1,3			9	34101
12,7	34,988	10,988	8,73	10,998	1,3	1,3			9	34001
14,989	34,988	10,988	8,73	10,998	8,0	1,3			9	34002
17,462	39,878	14,605	10,668	13,843	1,3	1,3			9	34103
19,05	45,237 45,237 49,225	16,637 16,637 19,05	12,065 12,065 14,288	15,494 15,494 18,034	1,3 1,3 1,3	1,3 1,3 1,3			10 10 11	34004 T-34004 34404
21,43	50,005 50,005	18,288 18,288	13,97 13,97	17,526 17,526	1,3 1,3	1,3 1,3			11 11	34204 T-34204
21,986	45,237 45,237 45,974	16,637 16,637 16,637	12,065 12,065 12,065	15,494 15,494 15,494	1,3 1,3 1,3	1,3 1,3 1,3			10 10 10	34304 T-34304 34504
25	51,994	14,26	12,7	15,011	1,5	1,3			12	34405
25,4	50,005 50,292 50,292	14,26 14,732 14,732	9,525 10,668 10,668	13,495 14,224 14,224	1 1,3 1,3	1 1,3 1,3			11 11 11	34305 34105 T-34105
26,988	50,292 50,292	14,732 14,732	10,668 10,668	14,224 14,224	3,5 3,5	1,3 1,3			11 11	34205 T-34205
29	50,292	14,732	10,688	14,224	3,5	1,3			11	34406
31,75	59,131 59,131 62	16,764 16,764 19,05	11,811 11,811 14,288	15,875 15,875 18,161	* 3,5	1,3 1,3 1,3			13 13 13	34206 T-34206 T-34606
34,925	65,088 65,088 72,233 76,2	18,288 18,288 25,4 28,575	13,97 13,97 19,842 23,02	18,034 18,034 25,4 29,37	* * 2,3 3,5	1,3 1,3 2,3 3,3			14 14 21 23	34107 T-34107 34207 34407
34,988	59,131 59,131 59,974 59,974	16,764 16,764 16,764 16,764	11,938 11,938 11,938 11,938	15,875 15,875 15,875 15,875	* * *	1,3 1,3 1,3 1,3			13 13 13 13	34307 T-34307 34507 T-34507
38	63 63	17 17	13,5 13,5	17 17	*	1,3 1,3			14 14	34408 T-34408
38,1	65,088 79,375	18,288 29,771	13,97 23,812	18,04 29,37	2,3 3,5	1,3 3,3			13 20	34008 34208

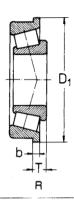
Basic	radial load	d. Factors			Speed li	mit	Weight	Equivalence
dyn. Cr	e ,	Υ	stat. C _{0r}	Y ₀	grease	oil		TIMKEN designation
kN	_		kN		min ⁻¹		kg	_
12,0	0,45	1,3	11,85	0,7	11 000	15 000	0,055	A4044/A4138
12,0	0,45	1,3	11,85	0,7	10 000	15 000	0,058	A4050/4138
12,0	0,45	1,3	11,85	0,7	10 000	14 000	0,063	A4059/4138
19,8	0,29	2,1	21,1	1,2	8 500	12 000	0,081	LM11749/LM11710
25,5	0,30	2,0	25,104	1,1	7 500	11 000	0,123	LM11949/LM11910
25,5	0,30	2,0	25,104	1,1	7 500	11 000	0,123	LM11949/LM11910
31,1	0,27	2,3	33,1	1,2	7 000	10 000	0,160	09067/09195
34,1	0,28	2,2	38	1,2	7 000	10 000	0,160	M12649/M12610
34,9	0,28	2,2	35,265	1,2	7 000	10 000	0,180	M12649/M12610
25,2	0,31	2,0	27,7	1,1	7 500	10 000	0,122	LM12749/LM12710
25,2	0,31	2,0	27,70	1,1	7 500	10 000	0,122	LM12749/LM12710
25,2	0,31	2,0	27,7	1,1	7 000	10 000	0,123	LM12749/LM12711
23,7	0,4	1,5	27,5	8,0	6 300	9 000	0,140	07097/07204
23,7	0,4	1,5	27,5	0,8	6 300	9 500	0,115	07100/07196
23,4	0,37	1,6	25,913	0,9	6 300	9 000	0,125	L44643/L44610
23,4	0,37	1,6	25,913	0,9	6 300	9 000	0,125	L44643/L44610
23,4	0,37	1,6	25,913	0,9	6 300	9 000	0,115	L44649/L44610
23,4	0,37	1,6	25,913	0,9	6 300	9 000	0,115	L44649/L44610
24,1	0,37	1,6	32,2	0,9	6 300	9 000	0,115	L45449/L45410
31,1	0,41	1,5	35,912	0,8	5 300	7 500	0,180	LM67048/LM67010
31,1	0,41	1,5	35,912	0,8	5 300	7 500	0,180	LM67048/LM67010
43,9	0,35	1,7	49,708	0,9	5 300	7 500	0,228	15123/15245
42,9	0,38	1,6	50,696	0,9	4 800	7 000	0,248	LM48548/LM48510
42,9	0,38	1,6	50,696	0,9	4 800	7 000	0,248	LM48548/LM48510
66,5	0,55	1,1	86,61	0,6	4 500	6 700	0,487	HM88649/HM88610
72,5	0,55	1,1	97,9	0,6	4 500	6 300	0,570	HM89446/HM89410
30,1	0,42	1,4	38,841	0,8	5 300	7 500	0,170	L68149/L68110
30,1	0,42	1,4	38,841	0,8	5 300	7 500	0,170	L68149/L68110
30,1	0,42	1,4	38,841	0,8	5 300	7 500	0,180	L68149/L68111
30,1	0,42	1,4	38,841	0,8	5 300	7 500	0,180	L68149/L68111
32,9	0,42	1,4	43,8	8,0	4 800	7 000	0,221	JL69349/JL69310
32,9	0,42	1,4	43,785	8,0	4 800	7 000	0,221	JL69349/JL69310
38,4	0,33	1,8	48,72	1,0	4 800	6 700	0,227	LM29749/LM29710
79,3	0,36	1,6	103	0,9	4 300	6 000	0,550	3490/3420



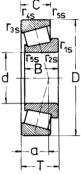

Dimensi	ons									Designation
d	D	В	С	Т	r _{1s} ,r _{2s} min.	ras,r4s min.	D ₁	b	a	
mm										_
39,688	73,025	22,098	21,336	25,654	0,8	2,3			18	34508
41,275	73,431	19,812	14,732	19,559	3,5	8,0			16	34608
44,45	73,025 82,931 95,25	18,258 25,4 28,575	15,083 19,05 22,225	18,258 23,813 27,783	1,5 3,6 0,8	1,5 0,8 0,8			14 18 20	34609 T-34009 34109
45,242	73,431	19,812	15,748	19,558	3,5	0,8			15	34209
45,618	82,931 82,931	25,4 25,4	19,05 22,225	23,812 26,988	3,5 3,5	0, 8 2,3			18 19	37009 34709
46,038	85	25,608	20,638	25,4	8,0	1,3			19	34509
47,625	93,264 93,264	30,302 30,302	23,812 23,812	30,162 30,162	3,5 3,5	8,0 8,0			21 21	34410 T-34410
50	90	22,225	15,875	8,887	2	8,0	94,661	4,762	16	34010RP5
50,8	82,55 92,075 95,25 97,63 107,95	22,225 25,4 28,575 24,608 29,317	16,51 19,845 22,225 19,446 22,25	21,59 24,608 27,783 9,124 27,783	3,5 3,5 3,5 3,5 2,3	1,3 0,8 0,8 0,8 0,8	101,549	3,962	16 20 20 21 21	34710 34809 34210 34510R 34909
53,975	123,825	32,791	25,4	17,462	3,5	3,3	130,073	6,35	37	34011R
57,15	104,775 110 110 112,712	29,317 29,317 29,317 30,162	24,605 27 27 23,812	30,162 27,795 27,795 30,162	2,3 3,5 3,5 8	3,3 2 2 3,3			23 24 24 23	34511 34311 T-34311 34411
60,325	127	36,512	26,988	36,512	3,5	3,3			32	T-34012
63,485	95	15,5	12	17	1	1			28	34112
63,5	92,075 112,712 112,712 112,712 112,712	12,7 30,048 30,048 30,048 30,048	9,525 23,812 23,812 23,812 23,812	13,495 11,112 30,162 30,162 30,162	1,5 3,5 3,5 3,5 3,5	1,5 3,3 3,3 0,8 3,3	117,373	4,762	16 25 25 25 25 25	34013 34113R 34113 34213 T-34113
	112,712 112,712 120 122,238	30,048 30,162 29,007 38,43	23,812 23,812 23,444 29,77	30,162 30,162 29,007 38,305	3,5 3,5 3,5 3.5	0,8 3,3 3,3 2			25 23 26 27	T-34213 37113 T-34313 T-34413
66,675	110 112,712 122,238	25,4 30,048 38.354	19,05 23,812 29,718	25,4 30,162 38,1	3,5 3,5 3,5	1,3 3,3 3,3			24 25 27	34713 34613 34813

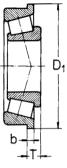
Basic	radial load	d. Factors			Speed li	mit	Weight	Equivalence
dyn. Cr	Θ	Y	stat. C _{Or}	Yo	grease	oit		TIMKEN designation
kN	_		kN	_	min ⁻¹		kg	_
5 7,5	0,33	1,8	72,0	1,0	4 300	6 300	0,460	M201047/201011
48,6	0,40	1,5	64,3	8,0	4 300	6 000	0,320	LM501349/LM501310
47,0 75,7 96,8	0,32 0,33 0,33	1,9 1,8 1,8	68,9 95,1 127,0	1,0 1,0 1,0	4 300 3 800 3 600	6 000 5 600 5 000	0,300 0,554 0,970	L102849/L102810 25580/25520 33885/33822
48,5	0,31	2,0	66,4	1,1	4 000	6 000	0,300	LM102949/LM102910
70 70	0,33 0,33	1,8 1,8	95,2 95,2	1,0 1,0	3 800 3 800	5 300 5 300	0,550 0,580	25590/25520 25590/25523
68,3	0,35	1,7	97	1,0	3 800	5 300	0,600	2984A/2924
98,0 98,0	0,34 0,34	1,8 1,8	128 128	1,0 1,0	3 400 3 400	5 000 5 000	0,905 0,905	3779/3730 3779/3730
74,3	0,32	1,9	87,26	1,0	3 400	5 000	0,554	365/362B cl.3
65,2 71 102 101 97,8	0,31 0,38 0,33 0,40 0,34	2,0 1,6 1,8 1,5 1,8	86,2 103 135 147 134	1,1 0,9 1,0 0,8 1,0	3 600 3 400 3 400 3 400 3 000	5 300 4 800 4 800 4 800 4 500	0,411 0,690 0,860 0,850 1,10	LM104949/LM104911 28580/28521 33889/33822 28678/28622B 462/453A
143	0,74	0,8	162	0,4	2 800	4 000	2,10	72212/72487B
97.8 109 109 130	0,34 0,34 0,34 0,34	1,8 1,8 1,8 1,8	134 139 139 196	1,0 1,0 1,0 1,0	3 000 3 000 3 000 2 800	4 300 4 300 4 300 4 000	1,10 1,22 1,22 1,03	462A/453X 462/454 462/454 39581/39520
161	0,50	1,2	226	0,7	2 600	3 800	2,16	HM813841/HM813810
42,3	0,78	8,0	56,8	0,4	3 000	4 500	0,400	L910349/L910310
31,2 116 116 116	0,40 0,40 0,40 0,40 0,40 0,40	5,5,5,5,5 1,5,5 1,5	46,0 174 174 174 174	8,0 8,0 8,0 8,0 8,0	3 200 2 800 2 800 2 800 2 800	4 500 4 000 4 000 4 000 4 000	0,250 1,26 1,24 1,24 1,24	LL510749/LL510710 3982/3920B 3982/3925 3982/3920 3982/3920
116 130 133 189	0,40 0,34 0,38 0,34	1,5 1,6 1,6	174 196 167 248	0,8 1,0 0,9 1.0	2 800 2 800 2 600 2 600	4 000 4 000 3 800 3 800	1,24 1,22 1,44 2,03	3982/3920 39585/39520 483/472A X39 6 2/X3963
92,0 113 189	0,44 0,40 0,34	1.4 1.5 1.8	138 172 248	0,7 0,8 1,0	2 800 2 800 2 600	4 000 4 000 3 800	0,900 1,20 1,92	29590/29521 3984/3920 HM212049/HM212011



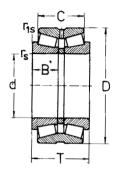

Dimensi	one									Designation
d	D	В	С	Т	r ₁₅ ,r _{2s} min.	r3 _S ,r4 _S min.	D ₁	b	а	
mm										_
71,438	127 136,525 136,525	36,17 46,038 46,038	28,575 36,512 36,512	36,512 46,038 46,038	3,5 3,5 3,5	3,3 3,3 3,3			28 38 38	34314P5 34214 T-34214
73,025	127 146,05 146,05	36,17 41,275 41,275	28,575 31,75 31,75	36,512 41,275 41,275	3,5 3,5 3,5	3,3 3,3 3,3			28 34 34	34414P5 34315 T-34315
76,2	139,992 161,925 161,925	36,098 55,1 55,1	28,575 42,862 42,862	36,512 53,975 53,975	3,5 3,5 3,5	3,3 3,3 3,3			31 40 40	34115 34415 T-34415
77,788	120 120 127	23,012 23,012 25	16 16 22	23 23 27,25	3,5 3,5 2,5	2,3 2,3 2,5			24 24 28	34316 T-34316 34016P5
82,55	133,35 139,992 146,05 161,925 161,925	29,769 36,098 41,275 48,26 48,26	25,4 28,575 31,75 38,1 38,1	33,338 36,512 41,275 47,625 47,625	3,5 3,5 3,5 3,5 3,5	3,3 3,3 3,3 3,3 3,3			31 31 34 35 35	34117AP4 34616 34516 34216 T-34216
84,138	133,35	29,769	25,4	33,338	3,5	3,3			31	34117BP4
85,725	133,35 146,05	29,769 41,275	25,4 31,75	33,338 41,275	3,5 6,4	3,3 3,3			31 34	34117P4 34017P4
88,9	152,4 190,5	39,688 57,531	30,163 46,038	39,688 57,15	6,4 8	3,3 3,3			34 41	34018 T-34318
89,974	146,975	40	32,5	40	7	3,5			31	34118
92	140 140 152,4	30 30 39,688	22 22 30,162	30 30 39,688	3,5 3,5 6,4	1,5 1,5 3,3			32 32 34	34418 T-34418 34518
92,075	152,4 171,45 171,45	36,322 48,26 48,26	30,162 38,1 38,1	39,688 47,625 47,625	6,4 3,5 3,5	3,3 3,3 3,3			35 37 37	34618 34218 T-34218
95,25	148,43 148,43 152,4	28,971 28,971 36,322	21,433 21,433 30,162	28,575 28,575 15,875	3 3 3,5	3 3 3,3	158,648	6,35	33 33 35	34119 T-34119 34019RP4
96,838	149,225	28,971	24,608	12,7	3,5	3,3	154,681	5,558	34	34319RP5
100,012	157,162	36,116	26,195	36,512	3,5	3,3			36	34120P4
101,6	180,975 212,725 212,725	48,006 66,675 66,675	38,1 53,975 53,975	17,462 66,675 66,675	3,5 7 7	3,3 3,3 3,3	188,798	7,938	40 48 48	34020RP4 34220 T-34220

Basic	adial load	. Factors			Speed li	mit	Weight	Equivalence
dyn. Cr	е	Y	stat. C _{0r}	Yo	grease	oil		TIMKEN designation
kN	_		kN		min ⁻¹		kg	_
161 219 219	0,36 0,48 0,48	1,7 1,2 1,2	226 296 296	0,9 0,7 0,7	2 400 2 400 2 400	3 600 3 400 3 400	1,64 2,91 2,91	567A/563 cl.3 H715345/H715311 H715345/H715311
161 213 213	0,36 0,41 0,41	1,7 1,5 1,5	226 307 307	0,9 0,8 0,8	2 400 2 200 2 200	3 400 3 200 3 200	2,68 3,31 3,31	567/563 cl.3 657/653 657/653
184 327 327	0,40 0,40 0,40	1,5 1,5 1,5	239 448 448	8,0 8,0 8,0	2 200 2 000 2 000	3 200 3 000 3 000	2,35 5,37 5,37	575/572 6576/6535 6576/6535
84,91 84,91 142	0,45 0,45 0,44	1,3 1,3 1,4	117 117 180	0,7 0,7 0,8	2 400 2 400 2 400	3 600 3 600 3 400	0,836 0,836 1,22	34306/34472X 34306/34472X
135 168 201 272 272	0,45 0,40 0,41 0,34 0,34	1,3 1,5 1,5 1,8 1,8	203 247 286 358 358	0,7 0,8 0,8 1,0 1,0	2 200 2 200 2 200 2 000 2 000	3 200 3 200 3 000 2 800 2 800	1,43 2,13 2,73 4,70 4,70	580/572 663/653 757/752 757/752
135	0,45	1,3	203	0,7	2 200	3 200	1,38	
135 213	0,45 0,41	1,3 1,5	203 307	0,7 0,8	2 200 2 200	3 200 3 000	1,34 2,60	497/492W cl.0 665A/653 cl.0
235 395	0,40 0,34	1,5 1,8	338 526	0,8 1,0	2 000 1 800	3 000 2 600	2,80 8,85	HM518445/HM518410 HM221434/HM221410
220	0,33	1,8	386	1,0	2 000	3 000	2,59	HM218248/HM218210
140 140 235	0,48 0,48 0,40	1,3 1,3 1,5	213 213 338	0,7 0,7 0,8	2 200 2 200 2 000	3 000 3 000 2 800	1,52 1,52 2,80	LM718947/XC18140D LM718947/XC18140D
174 305 305	0,44 0,37 0,37	1,4 1,6 1,6	268 416 416	0,7 0,9 0,9	2 000 1 900 1 900	2 800 2 600 2 600	2,59 4,79 4,79	598A/592A 77362/77675 77362/77675
136 136 204	0,49 0,49 0,44	1,2 1,2 1,4	416 416 313	0,7 0,7 0,7	2 000 2 000 2 000	2 800 2 800 2 800	1,72 1,72 2,64	42375/42584 42375/42584 594/592B cl.0
136	0,49	1,2	210	0,7	2 000	2 800	1,74	42381/42587B cl.3
142	0,47	1,3	195	0,7	1 900	2 800	2,47	52393/52618 cl.0
321 557 557	0,39 0,33 0,33	1,6 1,8 1,8	462 783 783	0,9 1,0 1,0	1 700 1 600 1 600	2 400 2 200 2 200	5,50 11,1 11,1	780/772B cl.0 HH224335/HH224310 HH224335/HH224310

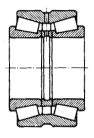



Dimensi	ons									Designation
d	D	В	С	Т	r _{1ş,} r _{2s} min.	135,14s min.	D ₁	b	a	
mm		- 1,,,,,								
120,65	174,625 174,625 206,375	36,512 36,512 47,625	27,783 27,783 34,925	35,72 35,72 47,625	3,5 3,5 3,5	1,5 1,5 3,5			32 32 45	34124 T-34124 34024
127	215,9	47,625	34,925	47,625	3,5	3,3			49	34025
130	234,95	63,5	49,213	63,5	6	3,3			50	34026
133,35	215,9	47,625	34,925	20,638	3,5	3,3	223,733	7,938	49	34027RP4
136,525	215,9	47,625	34,925	20,638	3,5	3,3	223,733	7,938	49	34127RP4
139,7	215,9 215,9 215,9 215,9	47,625 47,625 47,625 47,625	34,925 34,925 34,925 34,925	20,638 20,638 47,625 47,625	3,5 3,5 3,5 3,5	3,3 3,3 3,3 3,3	223,733 223,733		49 49 49 49	34028R 34028RP4 34028 34028P4
158,75	225,425 225,425	39,688 39,688	33,338 33,338	13,495 41,275	3,5 3,5	3,3 3,3	230,881	5,558	43 43	34132RP4 34132P4
180	250	45	37	47	3	3			55	34036
196,85	254	27,783	21,433	28,575	1,5	1,5			41	34039
203,2	261,142	27,783	21,433	28,575	1,5	1,5			44	34040P4
209,55	282,575 317,5	46,038 63,5	36,512 46,038	46,038 63,5	3,5 4,3	3,3 3,3			62 62	34142 T-34042MP5
234,95	327,025 327,025	52,388 52,388	36,512 36,512	52,388 52,388	6,4 6,4	3,3 3,3			59 59	34047 34047P5
241,3	327,025 327,025	52,388 52,388	36,512 36,512	25,4 25,4	6,4 6,4	3,3 3,3	336,448 336,448		59 59	34048R 34048RP5
265	352,425	34,925	23,813	36,513	3,5	3,3			71	T-34053MP5
273,05	406,4	69,85	46,037	69,85	6,4	6,4			72	T-34055P5
285,75	380,898	65,088	49,212	65,088	3,5	3,3			75	T-34157MP5
292,1	374,65	47,625	34,925	47,625	3,5	3,3			64	T-34059MP5
330,2	415,925 482,6 482,6	47,625 80,167 80,167	34,925 60,325 60,325	47,625 85,725 85,725	3,5 6 6	3,3 2,5 2,5			82 86 86	T-34166MP5 T-34066 T-34066P5
355,6	469,9	55,562	38,1	60,325	7	6,4			91	T-34071MP5
381	479,425	47,625	34,925	49,212	6,4	3,3			91	T-34076MP5
406,4	508	61,912	47,625	61,912	3,3	3,3			81	T-34181M

Basic	radial load	i. Factors			Speed II	mit	Weight	Equivalence
dyn. Cr	е	Υ	stat. Cor	Y ₀	grease	oil		TIMKEN designation
kN	_		kN		min ⁻¹		kg	_
220	0,33	1,8	375	1,0	1 700	2 400	2,70	M224749/M224710
220 317	0,33 0,46	1,8 1,3	375 525	1,0 0,7	1 700 1 500	2 400 2 200	2,70 6,10	M224749/M224710 795/792
308	0,49	1,2	523	0,7	1 400	2 000	6,97	74500/74850
507	0,36	1,6	784	0,9	1 300	1 900	11,3	95512/95925
313	0,49	1,2	528	0,7	1 400	2 000	6,78	74525/74850B cl.0
313	0,49	1,2	528	0,7	1 400	2 000	6,53	74537/74850B cl.0
310	0,49	1,2 1,2 1,2	531	0,7	1 400	2 000	6,17	74550/74850B
310 310	0,49 0.49	1,2	531 531	0,7 0,7	1 400 1 400	2 000 2 000	6,17 6,08	74550/74850B cl.0 74550/74850
310	0,49	1,2	531	0,7	1 400	2 000	6,08	74550/74850 cl.0
305	0,38		541	0.9	1,300	1 800	5.40	46780/46720B cl.0
305	0,38	1,6 1,6	541	0,9	1 300	1 800	5,35	46780/46720 cl.0
334	0,48	1,3	703	0,7	1 100	1 600	7.85	JM736149/JM736110
170	0,39	1,5	334	0.9	1 100	1 600	3,32	L540049/L540010
174	0,41	1,5	353	0,8	1 100	1 500	3,56	LL641149/LL641110 cl.0
331	0,51	1,2	661	0,6	1 000	1 400	8.84	67989/67920
651	0,52	1,2	1 098	0,6	950	1 300	18,5	93825/93125 cl.3
468	0.41	1,5	934	8,0	850	1 200	12,3	8575/8520
468	0,41	1,5	934	0,8	850	1 200	12,3	8575/8520 cl.3
468	0,41	1,5	934	0,8	850	1 200	11,9	8578/8520B
468	0,41	1,5	934	8,0	850	1 200	11,9	8578/8520B cl.3
304	0,54	1,1	571	0,6	800	1 100	9,80	L853042/L853010 cl.3
815	0,4	1,5	1 400	8,0	700	1 000	29,0	EE275108/275160 cl.3
610	0,4	1,4	1 277	8,0	750	1 100	19,5	LM654649/LM654610 cl.3
505	0,4	1,5	1 096	8,0	750	1 000	13,3	L555249/L555210 cf.3
480	0,5	1,2	1 064	0,7	670	950	15,0	L860049/L860010 cl.3
1 087	0,39	1,2 1,5	2 068	0,8	600	850	47,0	EE526130/EE526190
1 087	0,39	1,5	2 068	0,8	600	850	47,0	EE526130/EE526190 cl.3
635	0,5	1,2	1 239	0,7	600	850	25,0	EE161400/EE161850 cl.3
580	0,5	1,2	1 187	0,7	560	800	19,5	L865547/L865512 cl.3
855	0,37	1,6	2 125	0,9	530	750	29.0	L467549/L467510

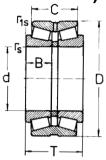


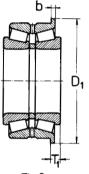
					• '					
								R		
Dimens	sions									Designation
d	D	В	С	Т	r _{1,s} ,r _{2s} min.	r3 ₅ ,r _{4s} min.	D ₁	b	a	
mm										_
406,4	508 546,1 549,275	61,912 87,313 84,138	47,625 68,263 61,912	61,912 87,313 85,725	3,3 6,4 6,4	3,3 6,4 3,3			81 103 99	T-34181MP5 T-34081MP5 T-34281
431,8	533,4	50,8	36,512	50,8	3,3	3,3			74	T-34086MP5
457,2	660,4	85,725	62,704	91,279	8	5			105	T-34091MP5
482,6	615,95	46,038	41,275	53,975	3,3	3,3			87	T-34097MP5
520,7	736,6	81,758	53,975	88,9	6,4	3,3			133	T-341/520P5
558,8	736,6	104,775	80,962	104,775	6,4	2			119	T-340/558P6
609,6	762	92,075	71,438	95,25	6,4	6,4			151	T-340/610
635	736,6	53,975	41,275	57,15	3,3	3,3			124	T-340/635P5
660,4	812,8	95,25	73,025	95,25	6,4	6,4			121	T-340/660P5
774,7	965,2	80,962	66,675	93,662	6,4	3,3			155	T-340/775
838,2	1 041,4	88,9	66,675	93,662	6,4	6,4			176	T-340/838P5
1 016	1 270	101,6	66,675	101,6	9,6	9,6			226	T-340/1016P5
1 350	1 630	127,5	95	128,5	6	6			284	T-340/1350P6S1

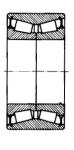


Basic r	adial load	i. Factors			Speed li	mit	Weight	Equivalence
dyn. Cr	ө	Υ	stat. Cor	Y ₀	grease	oil		TIMKEN designation
kN	_		kN		min ⁻¹	- 40	kg	_
855 1 330 1 295	0,37 0,42 0,41	1,6 1,4 1,5	2 125 2 973 2 831	0,9 0,8 0,8	530 500 500	750 750 750	29,0 56,0 55,0	L467549/L467510 cl.3 M667944/M667911 cl.3 LM567949/LM567910
643	0,33	1,8	1 421	1,0	500	750	26,0	L269143/L269110 cl.3
1 440	0,37	1,6	2 852	0,9	430	630	88,5	EE737181/EE737260 cl.3
790	0,35	1,7	1 690	0,9	450	630	34,0	EE80480/EE80425 cl.3
1 702	0,47	1,3	3 232	0,7	380	560	125	EE982051/EE982900 cl.3
2 214	0,35	1,7	5 377	0,9	380	530	119	LM377449/LM377410
1 975	0,49	1,2	4 969	0,7	360	500	95,0	L879947/L879910
985	0,44	1,4	2 755	0,7	360	500	37,0	EE80780/EE80720 cl.3
2 105	0,33	1,8	5 596	1,0	340	480	105	L281148/L281110 cl.3
2 185	0,40	1,5	4 981	8,0	280	400	134	EE752305/EE752380
2 390	0,44	1,4	6 381	0,7	260	380	174	EE763330/EE763410 cl.3
2 790	0,49	1,2	7 677	0,7	220	300	310	EE168400/EE168500 cl.3
4 875	0,46	1,3	14 305	0,7	160	240	536	

d > 220


Dimen	sions						Designation
d	D	В	С	Т	r ₁ min.	rıs min.	
mm							
160	240	48	94	115	3	1	35032
180	280	60	108	134	3	1	35036
200	310	6 6	123	152	3	1	35040
220	340	72	130	165	4	1	35044
240	360 400	72 95	130 168	165 210	3 4	1 1,5	T-35048J T-35143
260	360 400 440	60 82 106	109 146 180	134 186 225	3 4 4	1 1,5 1	T-35952 T-35052 T-35152
280	380 420 420	60 82 82	144 154 154	140 189 189	2,5 4 4	1 1 1	T-35956 T-35056 T-35056P5
300	420 500	72 90	128 152	160 205	4 5	1 1,5	T-35960 T-35160
340	520	82	135	180	5	1,5	T-35068
360	480 540	72 82	128 140	160 184	4 6	1 1,5	T-35972 35072F
380	520 620	65 106	112 172	150 242	5 5	1,5 2	T-35976 T-35176
420	700	122	200	275	6	2	T-35184
440	650	94	152	212	8	2,5	T-35088
460	620 680	74 100	131 175	175 230	4 6	1 2	T-35992 T-35092
480	650	78	130	180	5	2	T-35996
500	670	78	130	180	5	1,5	T-359/500
560	750 820	85 115	156 185	213 260	5 6	1,5 2	T-359/560 T-350/560
630	850	100	182	242	6	2	T-359/630
710	950 1 030	106 140	175 220	240 315	8 8	2,5 3	359/710 T-350/710
850	1 120	118	190	268	6	2	T-359/850




Basic ra	dial load. Fa	ctors				Speed lim	nit	Weight	
dyn. C _r	е	Y 1	Y ₂	stat. Cor	Y ₀	grease	oil		
kN	_			kN	_	min ⁻¹	**	kg	
662	0,37	1,8	2,7	1 288	1,8	950	1 400	17,0	
1 154	0,29	2,3	3,5	2 352	2,3	850	1 200	29,9	
1268	0,37	1,0	2,7	2 526	1,8	800	1 100	39,3	
1 469	0,34	2,0	2,9	3 032	1,9	750	1 000	50,1	
1 400 2 171	0,35 0,49	2,3 1,4	3,5 2,0	3 040 4 215	2,3 1,3	670 670	900 900	54,0 98,0	
1 337 1 877 2 778	0,37 0,44 0,24	1,8 1,5 2,8	2,7 2,3 4,2	3 100 3 790 5 605	1,8 1,5 2,8	670 630 600	900 850 800	36,8 77,0 127	
1 446 2 060 2 060	0,37 0,35 0,35	1,8 1,9 1,9	2,7 2,9 2,9	3 441 4 390 4 390	1,8 1,9 1,9	630 600 600	850 800 800	42,2 85,0 85,0	
1 878 2 552	0,31 0,32	2,1 2,1	3,2 3,2	4 337 5 035	2,1 2,1	600 480	800 630	62,9 148	
2 478	0,29	2,3	3,4	4 975	2,3	480	630	133	
1 888 2 088	0,31 0,28	2,2 2,4	3,3 3,6	4 685 4 235	2,2 2,4	480 480	630 630	74,0 123	
2 248 3 535	0,29 0,45	2,3 1,5	3,5 2,2	5 069 6 850	2,3 1,4	450 430	600 560	84,4 243	
4 922	0,46	1,5	2,2	9 605	1,4	630	480	390	
4 050	0,43	1,6	2,3	10 644	1,5	380	500	213	
2 319 3 694	0,3 9 0,50	1,7 1,3	2,5 2,0	5 640 8 022	1,7 1,3	380 360	500 480	134 253	
2 445	0,51	1,3	2,0	5 785	1,3	360	480	151	
2 750	0,53	1,6	2,3	6 685	1,5	380	500	161	
3 447 4 693	0,43 0,49	1,6 1,4	2,3 2,1	8 545 10 345	1,5 1,4	300 280	400 380	235 410	
4 467	0,40	1,7	2,5	11 675	1,6	260	360	356	
7 036 7 162	0,45 0,43	1,5 1,6	2,2 2,3	14 777 16 985	1,4 1,5	220 200	320 300	475 804	
6 307	0,46	1,5	2,2	18 004	1,4	180	240	635	

(Metric Series)

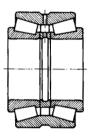
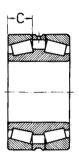
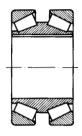
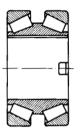


Fig.1


Fig.2


Fig.3


Fig.4

Dimen	sions									Designation
d	D	В	С	Т	rs min.	r _{1s} min.	Ď1	b	T ₁	
mm										_
25	52 52 67 67 67	15 18,5 17 17 17	28,5 37 29,3 29,3 29,3	35 37 40,5 40,5 40,5	0,6 3 1 1	0,6 0,3 0,6 0,6 0,6	58 75 75 75	3 2 6 2	6,25 7,6 11,6 7,6	35405R 35605-2RSR 35305R 35505R T-35305R
28	67	17	29,3	40,5	1	0,6	75	2	7,6	35306R
34.	64	18,4	37	37	3,3	0,3				35307-2RSR
35	80	19	31	43,5	2	0,6	88	6,5	12,75	35407R
39	68	18,5	37	37	3,3	3,3				35508-2RSR
40	90	33	55,5	72,5	1,5	0,6				35308
75	140	46	81	100	3	0,6				35415
90	140	32	56	72	2	0,6	146	6	14	35418RP5
100	180	34	64	80	3	1				35220
150	225 250 270	46,8 60 73	76,2 112 138	100 135,25 172	3 3 4	0,6 1 2				T-35530 35130 35230
160	270	66	120	150	3	1				35132
180	300	72	134	164	3	1				35136
230	355 355	65 65	110 110	145 145	5 5	1,5 1,5				T-35346M T-35346MP5
260	360 360 360 360	46,5 46,5 46,5 46,5	76 76 76 76	105 105 105 105	3 3 3	1 1 1				35452 35452P6A80100 T-35452 T-35452P5A80100
280	420	130	44	130	2	5				35456MP5DF
300	440	105	35	105	4	4				T-35360W6F32DF
330	420 420	43 43	75 75	100 100	4	1				35366 T-35366
370	500	43	74	100	5	3				T-35474
400	650	240	80	240	6,5	6,5				T-35380W69F32DF
560	820	242	80	242	6	6				T-353/560MDF
635	940	304,8	107,95	304,8	6,4	3,3				T-345/635W67F32DF

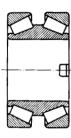
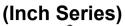
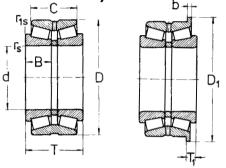
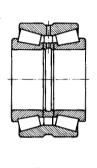


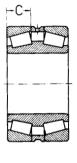
Fig.5

Fig.6


Fig.7


Fig.8


Basic radial load. Factors							i limit	Weight	Fig.	Equivalence
đyn. C _r	е	Y ₁	Y2	stat. C _{Or}	Y ₀	grease	e oil			Designation
kN				kN		min ⁻¹		kg	_	
46 48,8 73 73 73	0,43 0,45 0,83 0,83 0,83	1,6 1,5 0,8 0,8 0,8	2,3 2,2 1,2 1,2 1,2	74 68,6 118 118 118	1,5 1,5 0,8 0,8 0,8	5 600 5 600 4 800 4 800 4 800	7 000 7 000 6 000 6 000 6 000	0,382 0,385 0,687 0,752 0,687	2 3 2 2 2 2	FC10558V
73	0,83	8,0	1,2	118	8,0	4 500	5 600	0.687	2	
63,3	0,43	1,6	2,3	84,8	1,5	4 500	5600	0,829	3	A43719
84	0,83	8,0	1,2	162	8,0	3 800	4 800	0,997	2	FC10592
26	0,45	1,4	2,1	47,8	1,4	4 000	5 000	0,923	3	
105	0,35	2,0	2,9	122	1,9	3 400	4 300	2,12	1	
363	0,38	1,8	2,6	579	0,9	2 000	2 600	6,28	1	510861A/510862A
284	0,48	1,4	2,1	518	1,4	1 900	2 400	3,86	2	
265	0,42	1,6	2,4	340	8,0	1 500	1 900	6,82	1	30220A/510860A
545 829 1 216	0,33 0,24 0,44	2,0 2,8 1,6	3,0 4,1 2,3	1 189 1 496 2 164	1,0 2,7 0,8	1 200 1 200 1 000	1 400 1 400 1 300	12,7 25,8 39,5	1 1 1	2097730M 97530M
942	0,32	2,1	3,1	1 949	2,0	950	1200	34,9	1	2097732
1 279	0,29	2,4	3,5	2 559	2,3	850	1 000	47,5	1	2097736
1 331 1 331	0,33 0,33	2,1 2,1	3,1 3,1	2 545 2 545	2,0 2,0	750 750	900 900	48,0 48,0	4	97746
827 827 827 827	0,37 0,37 0,37 0,37	1,8 1,8 1,8 1,8	2,7 2,7 2,7 2,7	1 747 1 747 1 747 1 747	0,9 0,9 0,9 0,9	700 700 700 700	850 850 850 850	31,1 31,1 31,1 31,1	4 4 4 4	
995	0,75	0,9	1,4	2 030	8,0	630	750	85,0	5	847156L
1 021	0,87	0,8	1,2	2 145	0,8	600	750	50,9	6	118TDIE539AA650
971 971	0,32 0,32	2,1 2,1	3,1 3,1	2 336 2 336	2,0 2,0	560 560	700 70 0	28,3 28,3	1	
1 200	0,32	2,1	3,2	2 760	2,1	500	630	49,0	4	
3 647	0,87	8,0	1,2	8 210	8,0	400	500	293	7	332167
3 644	0,82	0,8	1,2	8 985	8,0	320	400	440	5	8471/560XM
5 943	0,88	8,0	1,2	15 100	8,0	280	340	702	8	250TDIE789AA798



Non-standrard double-row tapered roller bearings

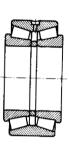
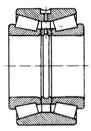


Fig.1

Fig.2


Fig. 4

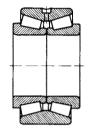

Fig.5

Fig.9

Dimensi	ons						Designation
d	D	В	С	Т	r _s min.	r _{1ş} min.	
mm							_
69,85	114,287 114,287 120	25,4 25,4 29,007	46,038 46,038 53,975	58,738 58,738 65,09	1,5 1,5 3,5	0,8 0,8 0,8	35314W7 T-35314W7 35514
73,025	114,287 114,287	25,4 25,4	46,038 46,038	58,738 58,738	3,5 3,5	8,0 8,0	35315 T-35315
82,55	136,525	29,769	53,975	69,85	3,5	8,0	35317
85,725	136,525	29,769	53,975	69,85	3,5	8,0	35417W7
92,075	149,225	28,971	52,387	66,672	3,5	0,8	35318
107,95	158,75 159,987 159,987 159,987	21,4 21,4 34,925 34,925	39,688 39,688 58,738 58,738	53,978 53,978 74,89 74,89	3,5 2 3,6 3,6	0,8 1 0,8 0,8	35422 P 5 35322 W 7 35522 W 7 T-35522 W 7
114,3	190,5 190,5	49,2 49,2	80,962 80,962	106,362 106,362	3,5 3,5	1,5 1,5	35323 T-35323
115	190,5 190,5	50 45	82,6 82,6	108 108	3,5 3	1	35423P4 35523P4
127	196,85 196,85	46 46	85,725 85,725	101,6 101,6	3,5 3,5	0, 8 0,8	35325 T-35325
136,525	190,5 215,9	39,7 51	73,0 25 92	85,725 110	3,5 2 ,5	0, 8 1	35427 35327RP4 ¹⁾
152,4	222,25 222,25 222,25	46,8 46,8 46,8	76,2 76,2 76,2	100,01 100,01 100,01	3,5 3,5 3,5	0,8 0,8 0,8	35330 T-35330 T-35330P5
203,2	282,575 282,575	46,038 46,038	82,55 82,55	101.6 101.6	3,5 3,5	0,8 0,8	35340 35340P4
206,375	336,55	100,010	169,862	211,138	3,5	1,5	7-35341M
219,075	358,775	200,025	86	196,85	6.4	1,5	T-35344DF
228,6	355,6	69,85	111,125	152,4	6,8	1,5	T-35446MP6
254	533,4	120,65	165,1	276,225	6.4	1,5	T-35451
260,35	400,05	73,025	107,95	146,05	6,4	1,5	T-35552M
300,038	422,275	82,55	136,525	174,625	6,4	1,5	T-3546 0W 7
317,5	422,275	128,588	53,975	128,588	1.5	3,5	T-35463F32DF
1) Bearin	g with rib o	on outer ring	g: D1 = 224	mm, b = 8	3 mm, T ₁	= 17 mm	

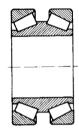
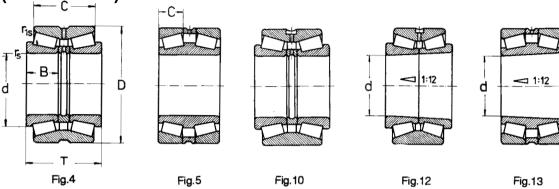


Fig.10

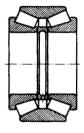
Fig.11


Fig.14

Basic	radial lo	oad. Fac	ctors			Speed	limit	Weight	Fig.	Equivalence
dyn. Cr	е	Y1	Y ₂	stat. Cor	Yo	grease	oil			Designation
kN	_			kN	_	min ⁻¹		kg	_	
180 180 255	0,49 0,49 0,38	1,4 1,4 1,8	2,1 2,1 2,6	295 295 415	1,4 1,4 1,7	2 400 2 400 2 200	3 000 3 000 2 800	2,05 2,05 2,45	9 9 1	29675/29622DC 29675/29622DC 482/472D
180 180	0,49 0,49	1,4 1,4	2,1 2,1	295 295	1,4 1,4	2 400 2 400	2 800 2 800	1,91 1,91	1	29685/29622D 29685/29622D
255	0,44	1,5	2,3	450	1,5	2 000	2 400	3,84	1	495/493D
255	0,44	1,5	2,3	450	1,5	1 900	2 400	3,72	9	497/493DC
275	0,49	1,4	2,1	510	1,4	1 800	2 200	4,37	1	42362/42587D
170 170	0,61 0,61	1,1 1,1	1,7 1,7	335 335	1,1 1,1	1 600 1 600	2 000 2 000	3,26 3,38	1	37425/37626D cl.3
280 280	0,40 0,40	1,7 1,7	2,5 2,5	630 630	1,6 1,6	1 600 1 600	2 000 2 000 2 000	4,97 4,97	9	LM4522546/LM522510DC LM4522546/LM522510DC
530 530	0,42 0,42	1,6 1,6	2,4 2,4	980 980	1,6 1,6	1 400 1 400	1 800 1 800	10,8 10,8	1	71450/71751D 71450/71751D
435 500	0,26 0,26	2,6 2,6	3,8 3,8	750 900	2,5 2,5	1 400 1 400	1 800 1 800	10,1 10,7	1	181115/181190XG
540 540	0,34 0,34	2,0 2,0	2,9 2,9	1 130 1 130	1,9 1,9	1 300 1 300	1 700 1 700	10,6 10,6	1	67388/67322D 67388/67322D
395 540	0,33 0,25	2,1 2,7	3,1 4,1	940 960	2,0 2,7	1 300 1 200	1 700 1 500	6,88 12,2	1 2	48393/48320D 200136X/200215XH
540 540 540	0,33 0,33 0,33	2,0 2,0 2,0	3,0 3,0 3,0	1 190 1 190 1 190	2,0 2,0 2,0	1 200 1 200 1 200	1 400 1 400 1 400	11,7 11,7 11,7	1	M231649/M231610D M231649/M231610D M231649/M231610D ci.3
600 600	0,51 0,51	1,3 1,3	2,0 2,0	1 410 1 410	1,3 1,3	900 900	1 100 1 100	17.8 17.8	1	67983/67920DC cl.0 67983/67920DC cl.0
1 810	0,33	2,0	3,0	3 864	2,0	800	1 000	70.0	4	H242649/H242610D
2 152	0,33	2,0	3,0	4 728	2,0	750	950	81,5	5	H24849D/H244810D
1 040	0,33	2,0	3,0	2 020	2,0	750	900	52,0	4	EE13092/EE131401D
3 157	0,94	0,7	1,1	5 340	0,7	560	700	265	4	HH953749/HH953710D
1 155	0,39	1,7	2,6	2 280	1,5	670	800	63,6	11	NA221026/221576CDTM
1 846	0,34	2.0	3,0	4 300	2,0	600	750	3,08	10	HM256849/HM256810DC
1 343	0,32	2,1	3,2	3 235	2,1	60 0	75 0	42,5	14	LM258649D/LM258610

Non-standrard double-row tapered roller bearings

	Fig.4		F	Fig.5		Fig.10		Fig.12	Fig.13
Dimensi	ons			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Designation		No
d	D	В	С	Т	r _s min.	r _{1ş} min.			
mm							_		
321,17	469,9	95,25	152,4	190,5	6,4	1,5	T-35464KW7		
331,523	488,95 488,95	174,6 174,6	74,6 74,6	174,625 174,625	3,5 3,5	3,5 3,5	T-35466DF T-35466KDF		
333,375	469,9	90,488	152,4	190,5	6,4	1,5	T-35467W7		
406,4	546,1	138,112	53,975	138,112	1,5	7,5	T-35480F32DF		
482,6	615,95	85,725	146,05	184,15	6,4	3,3	T-35396P5		
1 350 ¹⁾	1 630	113,5	127	275	6	3	354/1350AS1B		
1 900	2 200	113,5	127	275	6	3	354/1900S1B		
2 184,4	2 527,3	123,825	165,1	304,8	16	5	354/2184		
1) Tolera	nce +0,47 +0,34								



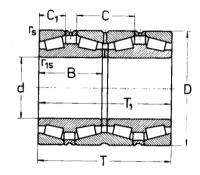
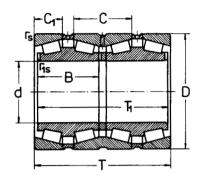

Fig.14

Fig.15

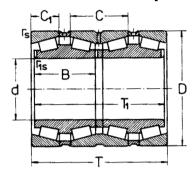
Basic r	radial lo	ad. Fac	tors			Spee	d limit	Weight	Fig.	Equivalence
dyn. Cr	е	Y ₁	Y ₂	stat. Cor	Yo	greas	e oil			Designation
kN				kN	_	min ⁻¹		kg		
2 101	0,34	2,0	3,0	4 860	2,0	560	670	95,5	12	HM26047TA/HM26010
2 535 2 535	0,34 0,34	2,0 2,0	3,0 3,0	6 100 6 100	2,0 2,0	530 530	670 670	119 113	5 13	HM262749D/HM262710 HM262749TD/HM262710
2 269	0,34	2,0	3,0	5 340	2,0	530	670	100	10	HM261049/HM261010DC
2 058	0,47	1,4	2,1	5 165	1,4	450	560	94,5	14	LM767749D/LM767710
2 622	0,33	2,0	3,0	7 270	2,0	400	500	124,6	4	LM272248DW/LM272210 cl.3
5 775	1,17	0,6	0,9	18 475	0,6	140	180	963	15	
7 205	1,17	0,6	0,9	25 250	0,6	110	130	1 425	15	
9 310	1,17	0,6	0,9	39 650	0,6	90	110	2 328	15	

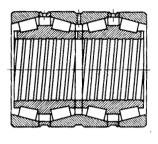
Four-row tapered roller bearings


Dimens	eions								Designation
d 	D	В	С	C ₁	Т	T ₁	r _s min.	r _{1ş} min.	
mm									
260	400	167,2	146	71	345	345	4	4	36052
280	420	165	154	71	345	345	4	4	T-36056
300	460	188	178	82	390	390	4	4	T-36060M
380	620	200	172	76	420	420	5	5	T-36176
420	620	170	150	67	355	355	5	6	T-36084
560	920	300	250	115	620	620	7,5	7,5	T-361/560

Basic rac	dial load. Fa	ctors				Speed lim	iit	Weight	
dyn. Cr	e	Y ₁	Y ₂	stat. C _{Or}	Yo	grease	oil		
kN	_			kN	_	min ⁻¹		kg	
3 055	0,64	1,1	1,6	7 605	1,1	400	530	150	
3 505	0,35	1,9	2,9	8 690	1,9	380	500	171	
4 135	0,29	2,3	3,5	10 580	2,3	320	430	241	
6 072	0,45	1,5	2,2	13 735	1,4	260	360	505	
5 335	0,4	1,7	2,5	13 342	1,6	260	360	377	
13 915	0,4	1,7	2,5	33 495	1,6	170	240	1 757	

Non-standard four-row tapered roller bearings

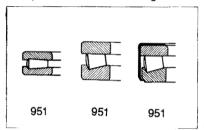

Dimen	sions								Designation
d	D	В	С	C ₁	т	T ₁	r _s min.	r _{1s} min.	
mm									_
240	410	128	114	50	270	270	4	4	T-36248
260	440	140	130	51	300	300	6	3	T-36452M
300	500	165	148	64	350	350	5	5	T-36360
380	620	184	170	75	388	388	5	5	T-36476J
400	540	130	116	48	280	280	5	5	T-36980
440	650	172	142	67	355	355	5	5	T-36288
460	730	210	180	80	440	440	10	5	T-36492
480	678	236	204	90	494	494	8	8	36496
500	720	202	180	82	420	420	5	5	T-362/500
600	800	171,5	164	71	365	365	5	5	T-362/600
630	920	245	213	94	515	515	7,5	7,5	T-360/630
660	1070	312	276	135	650	640	7,5	7,5	T-362/660



Basic r	adial los	d. Facto	rs		Speed	l limit	Weight	Equival	ence
dyn. Cr	е	Y ₁	Y2	stat. C _{Or}	Y ₀	grease	oil		Designation
kN	_			kN		min ⁻¹		kg	_
2 735	0,46	1,5	2,2	5 432	1,4	400	530	107	77748
2 490	0,70	1,0	1,4	5 420	0,9	380	500	181	777752M
4 105	0,46	1,5	2,2	8 695	1,5	320	430	280	77760
4 840	0,42	1,6	2,4	12 510	1,6	260	360	473	3077776
3 110	0,45	1,5	2,2	8 510	1,4	280	380	173	77880
5 370	0,46	1,5	2,2	13 305	1,4	240	320	412	77788
6 185	0,73	0,9	1,4	15 305	0,9	220	300	699	777792
7 582	0,33	2,0	3,0	22 050	2,0	220	300	536	3726WH2-G2
6 985	0,32	2,1	3,2	18 670	2,1	220	280	553	771/500
6 460	0,38	2,1	3,1	18 645	2,0	190	260	518	779/600
10 515	0,30	2,2	3,3	27 595	2,2	170	220	1 153	771/630
16 565	0,31	2,2	3,3	40 470	2,2	150	200	2 410	777/660

Non-standard four-row tapered roller bearings (Inch Series)

							١	V 28	
Dimensio	ns								Designation
d	D	В	С	C ₁	Т	T ₁	r _s min.	rış min.	
mm									
139,7	200,025	75,408	73,02	34,13	160,338	157,162	3,2	8,0	T-36428P6W28
190,5	266,7	89,695	84,138	38,1	188,912	187,325	3,3	1,5	T-36438
206,375	282,575	87	89,5	36,5	190,5	190,5	3,2	8,0	T-36441
215,9	336,55	127	117,475	53,925	266,7	266,7	3,2	6,35	T-36443JP6
241,478	349,148	108	101,6	44,5	228,6	228,6	3,5	1,6	T-36348
254	358,775	130,175	117,475	53,975	269,875	269,875	3,3	3,3	T-36451
266,7	355,6	109,538	101,6	44,448	228,6	230,1	3,2	1,5	T-36253M
285,75	380,898	117,5	107,9	49,3	244,475	244,475	1,6	1,6	T-36257M
343,052	457,098	122,5	103	47	254	254	3,3	1,5	T-36069AJP5
384,175	546,1	193,675	177,8	82,55	400,05	400,05	6,5	3,2	T-36477M
447,675	635	223,838	206,3	95,25	463,55	463,55	7,5	4	T-36490MP6W28
482,6	615,95	158,8	146	66,7	330,2	330,2	6,4	3,3	T-36296BJP6
558,8	736,6	196,9	177,8	81	409,575	409,575	8	4,5	T-362/559
584,2	762	188,9	169,6	77,75	401,638	396,875	8	4,5	T-362/584
660,4	812,8	176,15	158,8	73	365,125	365,125	6,4	3,3	T-363/660
938,212	1 270	403	355,5	168	825,5	825,5	15	6	T-362/938



Basic	radial lo	oad. Fac	tors			Speed	limit	Weight	Fig.	Equivalence	
dyn. Cr	е	Y ₁	Y2	stat. Cor	Y ₀	grease	oil			Designation	
kN	_			kN	_	min ⁻¹		kg	-		
767	0,34	2,0	3,0	1 949	2,0	750	1 000	16,6	2	331138A	
1 031	0,47	1,5	2,2	2 954	1,4	560	750	33,8	1	67885/67820-820D	
1 107	0,51	1,3	2,0	3 326	1,3	530	700	36,0	1	331486	
2 065	0,50	1,3	2,0	4 636	1,2	480	630	93,0	1		
1 995	0,35	1,9	2,8	4 805	1,9	450	600	72,5	1	EE127097D/EE127135-136D	
2 415	0,33	2,0	3,0	6 651	2,0	430	560	100	1	M249748D/M249710-710D	
1 740	0,49	1,4	2,1	5 160	1,4	430	560	61,0	1	105TQO503AA229	
1 850	0,43	1,6	2,3	5 460	1,5	400	530	79,0	1	LM654648D/LM654610-610D	
2 405	0,47	1,4	2,1	6 580	1,4	320	430	112	1	330661C	
4 780	0,35	2,0	2,9	11 880	1,9	280	380	295	1	151TQO647AA229	
7 015	0,33	2,0	3,0	21 730	2,0	240	320	482	2	330608C	
4 020	0,44	1,5	2,3	12 260	1,5	240	320	237	1	4TR19A	
6 750	0,34	2,0	2,9	21 300	1,9	200	280	456	1	LM377449D/LM377410-410D	
6 405	0,52	1,3	1,9	20 670	1,3	190	260	482	1	LM778549D/LM7778510-510D	
6 075	0,31	2,2	3,3	21 405	2,2	180	240	405	1	L221149D/L281110-110D	
23 340	0,34	2,0	2,9	78 835	1,9	120	160	3 160	1	LM287649D/LM287610-610D	

Tapered roller thrust bearings

Tapered roller thrust bearings

Suffixes

AR

- grinding addition on raceways

M

 machined cage guided on rolling elements and shaft

V

- bearing without cage

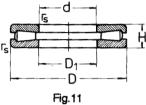
P6 - to

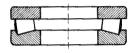
- tolerance class more accurate than normal

P5 - tolerance class more accurate than P6 P4 - tolerance class more accurate than P5

Tapered roller thrust bearings

Tapered roller thrust bearings have the same parts as cylndrical roller thrust bearings. They are manufactured in two constructive versions, i.e. with tapered raceways on both washers or on only one. The rollers are radially guided by the rib of one washer. These bearings can also be manufactured in the version without cage. In this case, they have maximum axial load carrying capacity.


Tolerances


Tapered roller thrust bearings are generally manufactured to the normal tolerance class and P6 and P5, at request. The values of the tolerances for d and D are give on page 37.

Tapered roller bearings are fitted with machined brass or steel cages.

Tapered roller thrust bearings

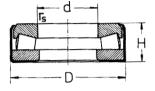
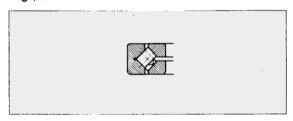


Fig.12

Fig.13

Dimens i d	ons D	н	r _s min.	D ₁	Basic a: load dyn. Ca	stat. Coa	Speed limit oil	Designation	Fig.	Weight	Equiva- lence TIMKEN
mm					kN		min ⁻¹	_		kg	_
40	67,8	19	1,5	40,4	73	300	4 000	951208	13	0,270	
50	78	22	1,5	50,4	93	382	3 600	951Z10A	13	0,390	
152,4	317,5	69,85	7,5	154	1 570	6 852	950	T-95130A	11	29,0	T-611
168,275	304,8	69,85	7,5	170	1 340	5 616	1 000	T-95134A	11	24,0	T-661
174,62	358,77	82,55	7,5	176	1 900	6 680	850	T-95135A	11	36,0	T-691
1 7 7,8	368,3	82,55	9,5	179,5	2 070	8 690	850	T-95136A	11	46,0	T-711
203,2	419,1	92,075	12	205	2 640	11 655	750	T-95140A	11	67,0	T-811
228,6	482,6	104,775	12	230	3 410	15 965	630	T-95146A	11	103	T-911
234,95	482,6 546,1	104,775 127	12 16	236,5 236,5	3 410 4 495	15 965 21 214	630 560	T-95247A T-95147A	11 11	101 171	T-911A T-921
254	539,75	117,475	12	255,5	4 210	20 037	560	T-95151A	11	145	T-1011
279,4	603,25	136,525	12	281	5 208	24 530	500	T-95156A	11	214	T-1120
406,4	711,2	146,05	9,7	408	5 986	30 370	450	T-95181A	11	275	T-16021
550	710	51	3	554	2 320	15 775	750	951/550P4AR	12	52,4	T-16021



Crossed tapered roller bearings

Crossed tapered roller bearings have smaller width and can take over purely axial loads in both directions, purely radial loads or combined loads, as normal tapered roller bearings.

These bearings consist of an outer ring, two inner rings and tapered rollers arranged alternatively at 90° between rings, as shown below:

Two tapered rollers are separated by plastics washers (distance washers).

The generatrix of the tapered rollers intersects bearing axis as in case of a normal tapered roller bearing; thus perfect rolling is achieved and friction between raceways and rollers is reduced. Roller diameter is larger than its length and the taper has small values which leads to minimum friction on roller front faces and low operating temperature.

In case of crossed tapered roller bearings, the loads are transmitted under an angle of 45° from one raceway to the other. Crossed tapered roller bearings are considered as thrust bearings. For that reason, in bearing tables one can find the basic axial load for each bearing, besides the basic radial load.

Crossed tapered roller bearings provide many benefits such as simple bearing design and spare parts supply. The relatively high preload and great distance between the pressure centers provide high stiffness. These bearings can be easily mounted and dismounted.

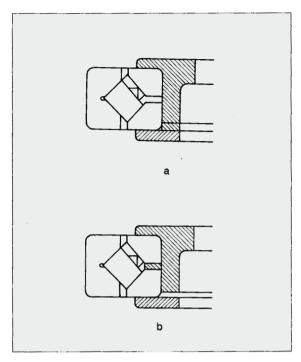
Crossed tapered roller bearings are used for main shaft bearings of vertical lathes, large sized milling and drilling machines, radar shaft bearings, welding manipulators.

Tolerances and rotation accuracy

Crossed tapered roller bearings are manufactured to high accuracy tolerance class. The values of tolerances for bore diameter, outside diameter, rotation accuracy $K_{ia},\,K_{ea}$ and side surface runout related to the bore diameter S_d and outer diameter S_D are given in table 1(see chapter 5).

Tolerances and rotating accuracy

Table 1


learing ymbol	Diamet mediur d _{mp}		outsid	e	Rad	
	max.	min.	max.	min.	K _{ia} ,	Kea
-	μm					
D.10.0230P5	+ 13	0	+ 13	0	6	6
D.10.0300P5	+13	0	+25	0	7	7
D.10.0330P5	+25	0	+25	0	8	8
D.10.0457P5	+25	0	+25	0	9	9
D.10.0580P5	+25	0	+38	0	10	10
D.10.0686P5	+38	0	+ 38	0	12	12
D.10.0902P5	+38	0	+38	0	14	14
D.10.1029P5	+51	0	+76	0	16	16
D.10.1270P5	+76	0	+76	0	19	19
D.10.1549P5	+76	Ō	+76	0	22	22
D.40.1880P5	+76	Ö	+76	ō	25	25

Considering the importance of the values of bore diameter, outside diameter, outer ring width and inner ring width for each bearing, they will be noted in a document which should accompany each bearing, according to the model

Preloading, stiffness

Due to the great number of rollers and the linear contact between the raceway and rollers, the elastic strain in crossed tapered roller bearings is very low. In order to increase stiffness, these bearings are loaded before mounting. We recommend as an approximate value for this preload 0,04 mm, for all bearing sizes.

Crossed tapered roller bearings can be preloaded if the inner rings are frontally approached. The magnitude of the preload is given by the washer width. For this purpose, the washer is adjusted by the machine-tool producer, the user respectively.

In the figure above, a and b, there are given the two versions of bearing preloading: with washer on the main shaft (a) and with washer between the two inner rings (b).

The bearing adjoint parts, the shaft and housing respectively, should be also properly sized, so that desired stiffness can be ensured.

Their thickness should be at least as bearing rings thickness.

The stiffness of these bearings can be calculated using the equation:

$$C_a = 39 d^{1,1} \Delta_a^{0,6}, N/\mu m$$

where

Ca - axial stiffness, N/µm

d - bore diameter, mm

Δa - bearing preload, mm

Lubrication

Crossed tapered roller bearings can be lubricated with grease or oil. In case of horizontal shafts and low speeds, grease lubrication is preferable.

In ordinary cases, oil bath lubrication or pressure oil lubrication should be provided. In case of high speeds and generally for bearings used for machine-tools, pressurized oil lubrication should be used since thus the gear boxes are lubricated. Oil penetrates through the space between the

two inner half-rings, but it should be considered that the rollers should be adequately lubricated when starting.

Equivalent dynamic radial load

This can be calculated using the equations:

$$P_r = F_r + Y_1 F_a$$
, when $F_a/F_r \le e$
 $P_r = 0.67 F_r + Y_2 F_a$, when $F_a/F_r > e$

Equivalent static radial load

This can be calculated using the equations:

$$P_0 = F_r + Y_0 F_a$$

Fits

As crossed tapered roller bearings can take over both radial and axial loads in both directions, another bearing is not needed in a bearing arrangement.

Dimensional variations, e.g. thermal expansion caused by bearing heating, do not influence upon the bearing. For this reason, the rings can be mounted with interference fits without any influence upon bearing operation.

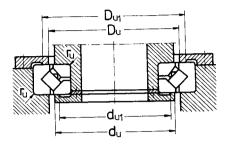
As an approximate unitary value for bearing rings tightening with their adjoint parts, 0,05 mm for each 1 000 mm of outside ring diameter is recommended. When determining the shaft and housing dimensions, the effective values of d and D should be considered. These values are noted for each bearing in the accompanying document.

Bearing mounting

For easy bearing mounting, the outer ring should be cooled and the inner ring heated or conversely, the shaft should be cooled and the housing heated, the inner ring and the housing should be heated, respectively.

For easy handling, all bearing rings with d > 500 mm are provided with threaded holes for screws with raising rings, which are removed after mounting.

Abutment dimensions


For a proper location of bearing rings on the shaft and housing shoulder respectively, shaft (housing) maximum connection radius r_{u max} should be less than bearing minimum mounting chamfer r_{s min}.

Shoulder height should also be properly sized in case of bearing maximum mounting chamfer.

The values of the connection radius r_u and mounting dimensions are given in table 2.

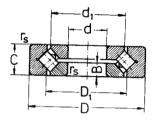
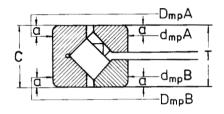

Crossed tapered roller bearings

						Table 2
Bearing symbol	Bore diamete		ent dime	nsions		
	d	du	d _{u1}	Du	D _{u1}	ru max.
	mm					
XD.10.0457P5	457,2	525	495	545	580	1,8
XD.10.0580P5 XD.10.0686P5	580	655	615	685	725	5,4
XD.10.0686PS	685,8	800	755	825	870	3,3
XD.10.0902P5	901,7	1 010	965	1 035	1 075	1,8
XD.10.1029P5	1 028,7	1 165	1 110	1 200	1 255	1,8
XD.10.1549P5	1 549,4	1 690	1 630	1 720	1 775	1,8
XD.10.1880P5	1 879,6	2 035	1 975	2 065	2 120	5,4

Non-standard crossed tapered roller bearings

Dimensi	ions			Basic I dyn.	oad	stat.		Speed limit	Weight	Designation
d	D	Т	r _s min.	rád. C _r	ax. C _a	rad. C _{Or}	ax. C _{0a}	grease		
mm				kN				min ⁻¹	kg	_
457,2	609,6	63,5	3,5	410	435	770	1 660	300	51	XD.10.0457P5
580	760	80	6,4	810	840	1 530	3 240	190	100	XD.10.0580P5
685,8	914,4	79,375	3,5	970	1 030	2 030	4 380	150	150	XD.10.0686P5
901,7	1 117,6	82,55	3,5	1 120	1 220	2 560	5 650	110	185	XD.10.0902P5
1 028,7	1 327,5	114,3	3,5	1 940	2 070	4 520	9 850	90	400	XD.10.1029P5
1 549,4	1 828,8	101,6	3,5	1 800	2 060	4 970	11 700	48	500	XD.10.1549P5
1 879,6	2 197,1	101,6	6,4	2 670	2 900	8 000	17 800	32	675	XD.10.1880P5

Dimensio	ns					Factors			
d	d ₁	D ₁	В	С	Y ₁	Y ₂	е	Y ₀	
mm					_				
457,2	530	540	28	63,5	0,52	0,77	1,9	0,51	
580	659	677	36,5	80	0,55	0,82	1,23	0,54	
685,8	798	813	36,5	79,375	0,52	0,77	1,3	0,51	
901,7	1 004	1 016	38,1	82,55	0,49	0,74	1,36	0,48	
1 028,7	1 177	1 194	52,4	114,3	0,52	0,77	1,3	0,51	
1 549,4	1 681	1 703	47	101,6	0,49	0,74	1,36	0,48	
1 879,6	2 040	2 059	47	101,6	0,49	0,74	1,36	0,48	

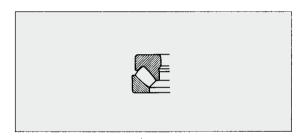

Crossed tapered roller bearings (Equivalent designation)

Designation		
U.R.B.	SKF	TIMKEN
XD.10.0457P5 XD.10.0580P5 XD.10.0686P5 XD.10.0902P5	615894A 615662A 615659A 615895A	XR766051 XR820060 XR855053 XR882055
XD.10.1029P5 XD.10.1549P5 XD.10.1880P5	BFKB353282/HA4 615898A 615899A	XR889058 XR897051 XR903054

Test record for crossed taper roller bearing

Bearing													
designation													

Measuring		Measuring		
distance (a):	mm	load:		N
Actual values for:				
1. Outside diameter:		D _{mpA}		. mm
		D _{mpB}		. mm
2. Bore diameter:		d _{mpA}		. mm
		d _{mpB}		. mm
3. Width of outer diameter	r:	c		. mm
4. Width of bearing:		т		. mm
Date:	Checke	ed by:	Approved	l by:



Spherical roller thrust bearings can take over heavy axial loads. Since the load is transmitted from one raceway to the other under an angle of about 50° related to the bearing axis., these bearings can also take over, besides axial loads, radial loads with magnitude values of up to 55% of the axial load magnitude.

Spherical roller thrust bearings are dismountable: shaft washer - rollers - cage assembly and housing washer, respectively can be separately mounted.

respectively.

Misalignment

Because of the spherical design of the housing washer raceway, sphered roller thrust bearings are self-aligning, i.e. they permit relative high errors of alignment of the shaft relative to the housing.

In case of rotating shaft washers and normal loads: $F_a + 2.7 F_r \le 0.05 C_0$ the values of permissible misalignment are given in the table below:

Permissible misalignment

Table 1

Bearing series	Permissible misalignment
	degrees
292	2
293	2,5
294	3

Suffixes

E - E-design (increased basic load)

F - machined steel cage

- machined brass cage

Tolerances

Spherical roller thrust bearings are generally manufactured to the normal tolerance class. The values of tolerances are given on page 37.

Dimensions

Overall dimensions of sphered bearings are in accordance with ISO 104 and national standard STAS 7651

Lubrication

In most cases, spherical roller thrust bearings are lubricated with oil.

Cage

Spherical roller thrust bearings are fitted with machined brass or steel cage.

Minimum axial load

Spherical roller thrust bearings should be subjected to a

minimum axial load, to ensure proper operation.

Minimum axial load can be calculated using the equation:

$$F_{a \, min} = \frac{1,25 \, C_0}{1,000}, \, kN$$

where:

F_{a min} - minimum axial load C₀ - basic static load, from tables

If the minimum axial load is not ensured, bearings should be preloaded (e.g. with springs)

Equivalent dynamic load

 $P_a = F_a + 1,2 F_r, kN,$

on the condition that: $F_r \le 0,55 F_a$.

Equivalent static load

 $P_{0a} = F_a + 2.7 F_r, kN,$

on the condition that: $Fr \le 0,55 F_a$.

Abutment dimensions

For a proper location of washers on the shaft and housing shoulder respectively, shaft (housing) maximum connection radius $r_{u \; max}$ should be less than bearing minimum mounting chamfer $r_{s \; min}$.

Shoulder height should also be properly sized in case of bearing maximum mounting chamfer.

The values of the connection radius r_u and mounting dimensions are given in table 2.

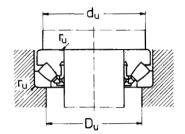
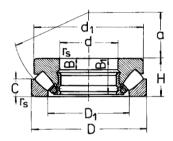
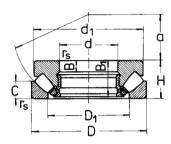



Table 2

									Table
Bore	Bearing series								
liameter	292	_		293		_	294	Du	_
	dų	Du	ru	dų	Du	Гu	du		ru
	min.	max.		min.	max.		min.	max.	
ım									
50	180	193	1,5	195	219	2	220	253	3
60	190	204	1,5	210	235	2,5	235	270	4
70	205	218	1,5	220	245	2,5	250	286	4
80	215	227	1,5	235	262	2,5	265	304	4
90	225	243	2	250	280	3	280	321	4
200	240	254	2	265	297	3	295	337	4
20	260	273	2	285	316	3	315	358	5
240	290	308	2	305	336	3	335	378	5
260	310	326	2	335	370	4	365	412	5
280	325	347	2	355	390	4	395	446	5
300	360	380	2,5	385	423	4	415	465	5
320	380	400	2,5	405	442	4	450	500	6
340	400	422	2,5	440	479	4	475	530	6
360	430	453	3	460	500	4	495	550	6
180	450	473	3	495	535	5	525	580	6
00	470	493	3	510	550	5	550	615	6
120	500	525	4	535	580	5	575	635	6
140	520	545	4	560	605	5	605	675	8
160	540	565	4	585	630	5	630	695	8
180	570	595	4	610	655	5	660	735	8
500	585	615	4	630	675	5	685	755	8
530	620	650	4	670	715	6	725	800	8
560	655	685	4	710	760	6	770	850	10
600	700	735	4	755	805	6	815	900	10
630	700 740	780	5	795	860	8	860	950	10
774	700	205	-	005	005		005	1 000	12
			5						12
			5						12
			5						12
300	935	980	6	990	1 060	8	1 080	1 100	12
670 710 750 800	790 835 880 935		825 875 925 980	875 5 925 5	875 5 890 925 5 935	875 5 890 960 925 5 935 1 000	875 5 890 960 8 925 5 935 1 000 8	875 5 890 960 8 965 925 5 935 1 000 8 1 015	875 5 890 960 8 965 1 070 925 5 935 1 000 8 1 015 1 120



Dimen	sions									Basic load dyn.	axial stat.	Speed limit oil	Designation	Weight
d 	D	Н	d ₁	D ₁	В	B ₁	С	rs min.	a	Ca	C _{Oa}			
mm										kN		min ⁻¹	_	kg
150	215	39	208	177	11	37	20	1,5	80	395	1 570	1 800	29230M	4,55
	250	60	240	190	20	57	28	2,1	87	800	2 850	1 400	29330EM	11,5
	300	90	285	207	32	86	43,4	4	92	1510	5 085	1 100	29430EM	30,0
160	225	39	220	188	11	37	20	1,5	87	410	1 680	1 700	29232M	4,80
	270	67	260	203	23	64	33	3	92	910	3 470	1 200	29332EM	16,0
	320	95	300	223	34	91	45,5	5	99	1 655	5 650	1 000	29432EM	35,0
170	240	42	235	201	13	40	22	1,5	93	470	1 900	1 600	29234M	5,95
	280	67	270	215	23	64	30,5	3	96	980	3 550	1 200	29334EM	16,5
	340	103	324	236	37	99	50	5	104	1 880	6 550	950	29434EM	45,8
180	250	42	245	211	14	40	21	1,5	97	485	2 020	1 600	29236M	6,25
	300	73	290	227	25	69	35,5	3	103	1 150	4 300	1 100	29336EM	20,5
	360	109	342	250	39	105	53	5	110	2 135	7 435	900	29436EM	52,0
190	270	48	262	226	14	45	25,5	2	103	500	2 200	1 400	29238EM	8,7
	320	78	308	243	27	74	36	4	110	1 305	4 820	1 000	29338EM	25,5
	380	115	360	264	41	111	55,5	5	117	2 345	8 220	850	29438EM	61,0
200	280	48	270	236	15	45	24	2	108	610	2 620	1 400	29240M	8,90
	340	85	325	257	29	81	40	4	116	1 500	5 605	950	29340EM	32,0
	400	122	380	277	43	117	59,4	5	122	2 580	9 160	800	29440EM	72,0
220	300	48	292	254	15	45	24	2	117	630	2 760	1 300	29244M	10,0
	360	85	345	273	29	81	41	4	125	1540	6 190	950	29344EM	34,5
	420	122	400	300	43	117	58,5	6	132	2660	9 630	750	29444EM	76,5
240	340	60	330	283	19	57	30	2,1	130	920	3 970	1 100	29248M	16,5
	380	85	365	295	29	81	40,5	4	135	1 580	6 420	900	29348EM	36,5
	440	122	420	322	43	117	59	6	142	2 720	10 040	700	29448EM	81,5
260	360	60	350	302	19	57	30	2,1	139	960	4 355	1 100	29252M	18,5
	420	95	405	324	32	91	46	5	148	1 995	8 175	800	29352EM	51,0
	480	132	460	346	48	127	63	6	154	3 210	12 125	670	29452EM	106
280	380	60	370	323	19	57	30	2,1	150	975	4 465	1 000	29256M	19,5
	440	95	423	343	32	91	45,5	5	158	2 070	8 705	800	29356EM	54,0
	520	145	495	372	52	140	70	6	166	3 810	14 675	630	29456EM	137
300	420 480 540	73 109 145	405 460 515	353 372 392	21 37 52	69 105 140	38 51 70,5	3 5 6	162 168 175	1 230 2 580 3 930		900 700 600	29260M 29360EM 29460EM	30,5 76,0 145
320	440	73	430	372	21	69	38	3	172	1 325	6 230	850	29264M	34,0
	500	109	482	391	37	105	53	5	180	2 555	10 770	670	29364EM	81,0
	580	155	555	422	55	149	74,5	7,5	191	4 450	17 246	560	29464EM	178
340	460 540 620	73 122 170	445 520 590	395 428 445	21 41 61	69 117 164	37 59 84	3 5 7,5	183 192 201	1 330 3 125 5 160	12 430	850 630 500	29268M 29368M 29468EM	33,5 106 226

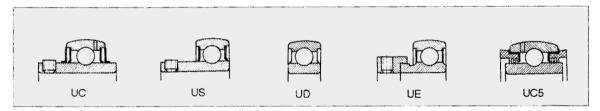
Dime r	esions D	н	d ₁	D ₁	В	B ₁	С	r _s	a	Basic Ioad dyn. Ca	axial stat. C _{0a}	Speed limit oil	Designation	Weight
mm								min.		kN		min ⁻¹	_	kg
360	500	85	485	423	25	81	44	4	194	1 710	7 765	750	29272M	51,0
	560	122	540	448	41	117	59	5	202	3 150	12 800	600	29372M	110
	640	170	610	474	61	164	82	7,5	210	5 205	20 202	500	29472EM	234
380	520	85	505	441	27	81	42	4	202	1 820	8 800	700	29276M	53,0
	600	132	580	477	44	127	63	6	216	3 805	15 475	530	29376M	140
	670	175	640	494	63	168	85	7,5	222	5 695	23 120	480	29476EM	263
400	540	85	526	460	27	81	42	4	212	1 900	9 570	700	29280M	57,0
	620	132	596	494	44	127	64	6	225	3 805	16 140	530	29380M	146
	710	185	680	525	67	178	89,5	7,5	234	6 450	26 000	450	29480EM	310
420	580	95	564	489	30	91	46	4	225	2 290	11 200	630	29284M	75,5
	650	140	626	520	48	135	68	6	235	4 260	17 700	500	29384M	170
	730	185	700	545	67	178	90,5	7.5	244	6 600	27 000	430	29484EM	325
440	600	95	585	508	30	91	46	5	235	2 380	11 900	630	29288M	78,0
	680	145	655	540	49	140	70,5	6	249	4 360	19 300	480	29388EM	180
	780	206	745	577	74	199	100	9,5	257	7 805	31 530	380	29488EM	420
460	620	95	605	530	30	91	46	5	245	2 380	12 100	600	29292M	81,0
	710	150	685	567	51	144	72	6	257	4 910	21 000	450	29392M	215
	800	206	765	596	74	199	101,5	9,5	268	7 850	32 800	380	29492EM	425
480	650	103	635	556	33	99	53	5	259	2 700	13 500	560	29296M	98,0
	730	150	705	591	51	144	73,5	6	270	4 950	21 700	450	29396M	220
	850	224	810	625	81	216	108	9,5	280	9 455	38 865	340	29496EM	542
500	670	103	654	574	33	99	55	5	268	2 755	14 260	560	292/500M	105
	750	150	725	611	51	144	74	6	280	5 100	22 600	430	293/500M	235
	870	224	830	648	81	216	110	9,5	290	9 200	39 200	340	294/500EM	560
530	710 800 920	109 160 236	692 772 880	610 648 686	35 54 86	105 154 228	57 76 116	5 7,5 9,5	288 295 308		15 900 26 200 3 43 100	530 400 320	292/530M 293/530M 294/530EM	125 270 650
560	750 850 980	115 175 250	732 822 940	644 690 727	37 60 92	111 168 242	61 85 122	5 7,5 12	302 310 328	6 500	18 400 28 800 50 000	480 380 300	292/560M 293/560M 294/560EM	140 320 810
600	800 900 1030	122 180 258	780 870 990	688 731 769	39 61 92	117 173 249	60 87 128	5 7,5 12	321 335 349		18 600 33 300 55 555	450 340 280	292/600EM 293/600M 294/600EF	170 400 900
630	850	132	830	723	42	127	67	6	338	4 620	23 600	400	292/630EM	210
	950	190	918	761	68	183	92	9,5	359	8 200	38 000	320	293/630EM	485
	1 090	280	1 040	815	100	270	137	12	365	14 100	60 800	260	294/630EM	1 100
670	900	140	880	773	45	135	73	6	361	4 830	26 200	380	292/670M	255
	1 000	200	968	813	68	193	96	9,5	372	8 350	38 800	300	293/670M	545
	1 150	290	1 105	864	106	280	141	15	387	15 100	0 66 700	240	294/670EM	1 260

Dimer	slons									Basic axial load dyn. stat.	Speed limit oil	Designation	Weight
d 	Ð	Н	d ₁	D ₁	В	B ₁	С	r _s min.	a	Ca Coa			
mm										kN	min ⁻¹	_	kg
710	950 1060 1220	145 212 308	930 1 028 1 165	815 855 917	46 72 112	140 204 298	73 103 149	6 9,5 15	380 405 415	6 000 29 300 9 650 45 500 17 200 75 000	340 280 220	292/710M 293/710EM 294/710EM	290 660 1 500
750	1 000 1 120 1 280	150 224 315	977 1 086 1 220	858 910 964	48 76 11 6	144 216 305	74 109 153	6 9,5 15	409 415 436	5 900 31 000 10 600 49 900 18 300 83 300	340 260 200	292/750EM 293/750M 294/750EM	325 770 1 650
800	1 060 1 180 1 360	155 230 335	1 035 1 146 1 300	911 965 1034	52 78 120	149 222 324	77 111 165	7,5 9,5 15	434 440 462	6 390 35 335 11 300 54 400 19 800 91 100	320 240 190	292/800EM 293/800M 294/800EM	388 865 2 025
							,						

Bearings for various applications

Bearings for various applications were required by special designs and also for the simplification of bearing joints. These bearings are referred to as bearings for:

- agricultural machines,
- textile machinery.
- water pumps of motor vehicles,
- cardan drives and
- special sleeves.



Deep groove ball bearings with spherical outer ring and extended inner ring

These bearings are simple in design, sealed on both sides and have spherical outer ring and extended inner ring. They can be manufactured in various designs.

Design

Deep groove ball bearings with spherical outer ring and extended inner ring are manufactured with metric and inch dimensions. The spherical outer ring permits errors of alignment up to 2,5°, on both sides. These bearings are generally used for agricultural machines. They are fastened on the shaft either with special screws without heads, UC2 and US types or with an eccentric clutch, UE type. These bearings are sealed on both sides and lubricated with lithium based grease of consistency 3. Relubrication is not necessary but due to the arduous operating conditions, i.e. dust and impurities, bearings are provided with relubrication holes

Bearings UD type are of the same design as standardized bearings series 62, excepting the spherical outer surface.

Tolerances

Deep groove ball bearings UC, US and UE type, with metric or inch dimensions are manufactured with bore tolerances according to table 1. The tolerances of the bore diameter for bearings UD type and also tolerances of the outer diameter for all types of bearings are in accordance with the tolerance class P0 for deep groove ball bearings and are given in table 1.

For the designations Δ_{dmp} and Δ_{Dmp} , see page 37.

If the shaft is manufactured in a tolerance class "h" and the tolerances for bearings UC, US and UE types are those in table 1, the fit will be a clearance fit.

Abutment dimensions tolerances

Table 1

Nominal d,D over	up to	over	up to	Inner ring type UC,U: Admp high	S,UE low	type UD ∆dmp high	low	Outer ring All bearings ^Dmp high	low
mm		inch		μm					
10	18	0,3937	0,7087	+15	0	0	-8		_
18	30	0,7087	1,1811	+18	0	0	-10	_	
30	50	1,1811	1,9685	+21	0	0	-12	0	-10
50	80	1,9685	3,1496	+24	0	0	-15	0	-10
80	120	3,1496	4,7244	+28	0	-	-	0	-15
120	150	4,7244	5,9055	-	~	-	_	0	-15

Radial and axial clearance

Deep groove ball bearings UC, US, UE and UD types have a radial clearance C3 as that of deep groove ball bearings on page 118. Axial clearance of these bearings is 6 - 8 times larger than the radial clearance.

Equivalent dynamic and static load

Equivalent dynamic and static load of these bearings can be calculated as in case of deep groove ball bearings,

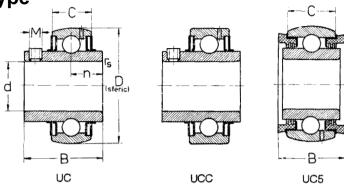
Speeds

The speeds of these bearings depend mainly on the fit. In case of shafts manufactured to less accurate tolerance classes, the bearings operate at low speeds and in case of shafts manufactured to more accurate tolerance classes, the speeds are higher. The speeds as functions of shaft tolerances are given in table 2.

Values for speed limit

Table 2

Bore sym- bol	Shaft dia- meter	Speeds for shaft tolerance										
		m7, k7	j7	h7	h8	h9	h10					
	mm	min ⁻¹										
3	17	12 000	9 500	6 000	4 300	1 500	900					
04	20	10 000	8 000	5 000	3 600	1 200	800					
05	25	9 000	7 200	4 500	3 100	1 100	720					
06	30	7 500	6 000	3 800	2 600	900	600					
7	35	6 300	5 000	3 200	2 200	750	500					
8	40	5 600	4 500	2 800	1 900	670	450					
9	45	5 300	4 300	2 600	1 800	630	430					
10	50	4 800	3 800	2 400	1 700	580	380					
11	55	4 300	3 400	2 200	1 500	520	340					
2	60	4 000	3 200	2 000	1 400	480	320					
3	65	3 700	3 000	1 800	1 300	450	300					



Deep groove ball bearings with extended inner ring

UC and UCC type

Dimens d	sions	D	В	С	n	r _s min.	M ¹⁾	Basic (load dyn. C _r	stat. C _{Or}	Designation	Weight
mm	inch	mm						kN		_	kg
17		46	31	16	12,7	0,6	1/4"-28UNF	12,8	6,65	UC203	0,152
20		47	31	16	12,7	1	1/4"-28UNF	12,8	6,65	UC204	0,152
22,225	7/8"	52	34	17	14,3	1	1/4"-28UNF	14	7,85	UC205-14	0,226
25		52 52	34 34	17 17	14,3 14,3	1	M6×1 M6×1	14 14	7,85 7,85	UC205 UCC205	0,199 0,202
25,4	1"	52	34	17	14,3	1	M6×1	14	7,85	UC205-16	0,195
28,575	1"1/8	62	38,1	19	15,9	1	M6×1	19,5	11,3	UC206-18	0,306
30		62 62	38,1 38,1	19 19	15,9 15,9	1	M6×1 M6×1	19,5 19.5	11,3 11,3	UC206 UCC206	0,320 0,320
30,162	1"3/16	62	38,1	19	15,9	1	1/4"-28UNF	19,5	11,3	UC206-19	0,318
31,75	1"1/4	72	42,9	20	17,5	1,1	M8×1	25,7	15,4	UC207-20	0,530
35		72 72	42 ,9 42 ,9	20 20	17,5 17,5	1,1 1,1	M8×1 M8×1	25,7 25,7	15,4 15,4	UC207 UCC207	0,510 0,510
38,1	1"1/2	80	49,2	21	19	1,1	M8×1	32	17,8	UC208-24	0,699
40		80 80	49,2 49,2	21 21	19 19	1,1 1,1	M8×1 M8×1	32 32	17,8 17,8	UC208 UCC208	0,642 0,642
41,275	1"5/8	85	49,2	22	19	1,1	5/6"-24UNF	32,7	20,2	UC209-26	0,757
42,862	1"11/16	85	49,2	22	19	1,1	5/6"-24UNF	32,7	20,2	UC209-27	0,717
44,45	1"3/4	85	49,2	2 2	19	1,1	M8×1	32,7	20,2	UC209-28	0,690
45		85 85	49,2 49,2	22 22	19 19	1,1 1,1	M8×1 M8×1	32,7 32,7	20,2 20,2	UC209 UCC209	0,717 0,717
47,625	1"7/8	90	51,6	23	19	1,1	3/8"-24UNF	35,1	23,1	UC210-30	0,886
49,212	1"15/16	90	51,6	23	19	1,1	3/8"-24UNF	35,1	23,1	UC210-31	0,838
50		90 90	51,6 51,6	23 23	19 19	1,1 1,1	M10×1,25 M10×1,25	35,1 35,1	23,1 23,1	UC210 UCC210	0,813 0,813
50,8	2"	90 100	51,6 55,6	23 25	19 22,2	1,1 1,5	3/8"-24UNF 3/8"-24UNF	35,1 43,4	23,1 29,3	UC210-32 UC211-32	0,788 1,15
55		100 100	55,6 46	25 33	22,2	1,5 1	M10×1,25	43,4 43,4	29,3 29,3	UC211 UC511	1,03 1,03
60		110	65,1	27	25,4	1,5	M10×1,25	52,4	3 6	UC212	1,62
65		120	65,1	27	25,4	1,5	M10×1,25	57,2	40	UC213	2,01

Equivalence

KOYO

ASAHI

FAG

UC205

UC205 56205

UC205-16 UC205-16

56205.100

UC206

UC206

56206

UC207-20 UC207-20 UC207

UC207

56207.104

56207

UC208

UC208

56208

UC209-28 UC209-28

56209.112

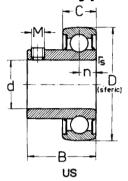
UC209

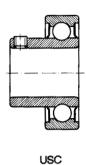
UC209

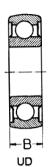
56209

UC210

56210


UC211


UC213


Unn 3

Deep groove ball bearings with extended inner ring UC, USC and UD type

UD209F2

0,457

Dimens	sions							Basic load		Designation	Weight
d		D	В	C ₁	n	rs min.	M	dyn. Cr	stat. C _{Or}		
mm	inch	mm					_	kN		_	kg
19,05	3/4"	47 47	25 25	14 14	7 7	1	M5×0,8 M5×0,8		6,65 6,65	US204-12 USC204-12	0,132 0,134
20		47 47 47	14 25 25	14 14	7 7	1 1 1	M5×0,8 M5×0,8		6,65 6,65 6,65	UD204 US204 USC204	0,104 0,138 0,140
22,225	7/8 *	52 52	27,5 27,5	15 15	7,5 7,5	1	M6×1 M6×1	14 14	7,85 7,85	US205-14 USC205-14	0,150 0,153
25		52 52 52	15 27,5 27,5	15 15	7,5 7,5	1 1 1	M6×1 M6×1	14 14 14	7,85 7,85 7,85	UD205 US205 USC205	0,128 0,147 0,150
25,4	1"	52 52 52	15 27,5 27,5	15 15	7,5 7,5	1 1 1	M6×1 M6×1	14 14 14	7,85 7,85 7,85	UD205-16 US205-16 USC205-16	0,130 0,144 0,147
28,575	1" 1/8	62 62	28,5 28,5	16 16	8 8	1	M6×1 M6×1	19,5 19,5	11,3 11,3	US206-18 USC206-18	0,266 0,269
30		62 62	28,5 28,5	16 16	8 8	1	M6×1 M6×1	19,5 19,5	11,3 11,3	US206 USC206	0,252 0,255
30,163	1"3/16	62 62	28,5 28,5	16 16	8 8	1	M6×1 M6×1	19,5 19,5	11,3 11,3	US206-19 USC206-19	0,250 0,253
35		72 72 72	17 34 34	17 17	8,5 8,5	1,1 1,1 1,1	M8×1 M8×1	25,7 25,7 25,7	15,4 15,4 15,4	UD207 US207 USC207	0,277 0,420 0,420

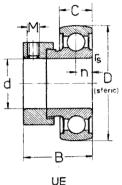
32,7

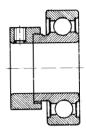
20,4

1,1

45

85


21

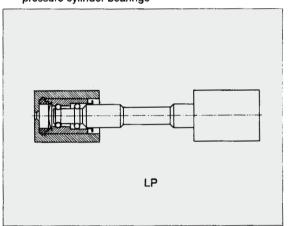


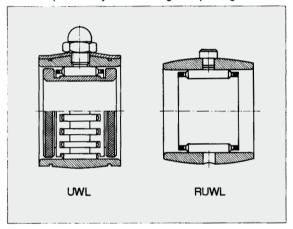
Equivaler	nce		 	
KOYO	NTN	ASAHI NACHI		
	AS04-3/4	B4-12		
	CS04LL AS04	B4		
PB14 RB14		B5-14		
PB16M RB16M	CS05LL	B5		
PB16 RB16		B5-16		
PB18 RB18				
PB19M RB19M				
PB19 RB19				

Deep groove ball bearings with extended inner ring UE and UEC type

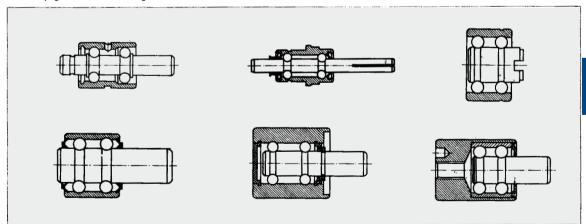
						JE			UEC		
Dimen	sions	D	В	С	n	r _s min.	M	Basic I load dyn. Cr	stat. C _{Or}	Designation	Weight
mm	inch	mm					_	kN		_	kg
19,05	3/4"	47 47	31 31	15 15	7,5 7,5	1 1	1/4"-28UNF 1/4"-28UNF	12,8 12,8	6,65 6,65	UE204-12 UEC204-12	0,162 0,165
20		47 47	31 31	15 15	7,5 7,5	j 1	1/4"-28UNF 1/4"-28UNF	12,8 12,8	6,65 6,65	UE204 UEC204	0,155 0,158
22,225	7/8"	52 52	31 31	15 15	7,5 7,5	1	1/4"-28UNF 1/4"-28UNF	14 14	7,85 7, 85	UE205-14 UEC205-14	0,220 0,22 3
2 5		52 52	31 31	15 15	7,5 7,5	1	1/4"-28UNF 1/4"-28UNF	14 14	7,85 7,85	UE205 UEC205	0,200 0,203
25,4	1"	52 52	31 31	15 15	7,5 7,5	1	1/4"-28UNF 1/4"-28UNF	14 14	7,85 7,85	UE205-16 UEC205-16	0,190 0,193
28,575	1"1/8	62 62	35,7 35,7	18 18	9 9	1	5/16"-24UNF 5/16"-24UNF	19,5 19,5	11,3 11,3	UE206-18 UEC206-18	0,331 0,335
39		62 62	35,7 35,7	18 18	9 9) 1	5/16"-24UNF 5/16"-24UNF	19,5 19,5	11,3 11,3	UE206 UEC206	0,313 0,317
30,163	1"3/16	62 62	35,7 35,7	18 18	9 9	1	5/16"-24UNF 5/16"-24UNF	19,5 19,5	11,3 11,3	UE206-19 UEC206-19	0,311 0,315

ASAHI FH204-12 FHR204-12	FAG	FAFNIR
	1924-1476	
11111204-12.		RA012RR RA012RRB
FH204 FHR204		RAE20RR RAE20RRB
FH205-14 FHR205-14	16205.014 26205.014	RA014RR RA014RRB
FH205 FHR205	16205 26205	RAE25RR RAE25RRB
FH205-16 FHR205-16	16205.100 26205.100	RA100RR RA100RRB
FH206-18 FHR206-18		RA102RR RA102RRB
FH206 FHR206		RAE30RR RAE30RRB
FH206-19 FHR206-19		RA103.RR RA103.RR
	FHR204 FH205-14 FHR205-14 FH205 FHR205 FH205-16 FHR205-16 FH206-18 FH206-18 FH206 FHR206 FHR206	FHR204 FH205-14 16205.014 FH205-14 26205.014 FH205 16205 FHR205 16205.100 FH206-16 16205.100 FH206-18 FH206-18 FH206 FHR206 FH206 FH206




Bearings for textile machines

Bearings for textile machines have various designs, depending on the application. Some of them are as follows:


- pressure cylinder bearings

-lower pressure cylinder bearings for spinning machines

- deep groove ball bearings, double row

Designation

The designations of the bearings for textile machinery depend on their design and application, as follows:

- Designations for pressure cylinder bearings consist of the prefix LP followed by bearing series and mean distance between the two bearings on shaft ends.

Example: LP101-90

- Designations for lower pressure cylinder bearings for

spinning machines consist of the prefix UWL, followed by the outside diameter and the locating seating width according to table 1 (see figure on next page).

- deep groove ball bearings, double row, of various designs are designated by the prefix RT followed by the value of the outer ring diameter and its width.

Bearings fitted with plastics cages TN are designated by the suffix TN.

Example: RT 1625 TN

Designation for lower pressure cylinder bearings for spinning machines

Table 1

Seating width B ₂	Lid width W	Bearing desi	gnation				
20	20,2	UWL 2820	UWL 3220	UWL 3620			
22	22,2	UWL 2822	UWL 3222	UWL 3622			
24	24,2	UWL 2824	UWL 3224	UWL 3624	UWL 4024	UWL 4524	
25	25,2				UWL 4025	UWL 4525	
26	26,2			UWL 3626	UWL 4026		
28	28,2		UWL 3228			UWL 4528	
30	30,2				UWL 4030	UWL 4530	

Design

Pressure cylinder bearings consist of a shaft which has on each end a deep groove ball bearing, double row. The bearing outer ring is just the top roller or the top roller is to be mounted on it. In this case, the shaft is the inner ring.

These bearings are shielded on both sides against the penetration of impurities or foreign bodies during operation.

Lower pressure cylinder bearings for spinning machines consist of an inner ring with two ribs, an outer ring, a needle roller polyamide cage and side location lid.

The rings are manufactured by steels for bearings with hardness between 59 and 63 HRC.

The cage is of plastics and the locating lid of pressed sheet.

Deep groove ball bearings, double row, RT type, consist of an outer ring of various designs, a shaft with raceways instead of inner ring, two ball cages and, in case of some bearings, various seals. They are used for gears, guiding and locating rollers, shaft washers of warp winders, spinning machines etc.

Tolerances and radial clearance

The tolerances for pressure cylinder bearings, LP type are not standardized by national and international standards, but the runout values are given in dependence to the top rollers.

The values of the outer ring runout K_{ea} and radial clearance are given in table 2.

Values for the outer ring runout Kea and radial clearance

Table 2

Top roller designation	Kea	Rad min.	max.	ance
_	μm			
LP 101; LP 132; LP 315; LP 316; LP 317 LP 302; LP 314; LP 701	8 20	5 0	30 20	

The tolerances of the lower pressure cylinder bearings for spinning machines are given in table 3.

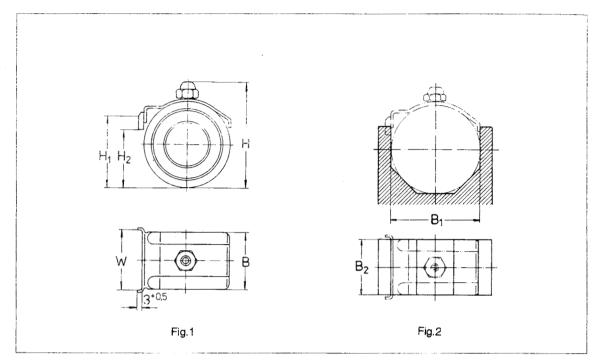
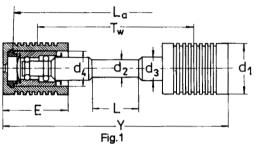

Pressure cylinder bearings deviations

Table 3

Parameter	Deviation high lo	ow
-	μm	
Outside diameter deviation, Δ_{Dmp}	0 -	-25
Bore diameter deviation, $\Delta_{\mbox{dmp}}$	0 -	-10
Inner ring width deviation, $\Delta_{\mbox{\footnotesize{BS}}}$	+ 25	-25
Inner ring raceway runout, Kia	max. 13	

The abutment dimensions are given in table 4, considering the side location lid and bearing seating.



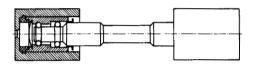
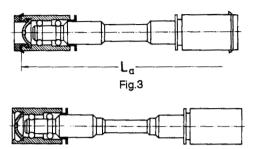

Abutment dimensions for the lower pressure cylinder bearings

Table 4

Parameter		Abutment d UWL 28	limensions for UWL 32	UWL 36	UWL 40	UWL 45	
_		mm					
Total heigh	nt H _{max}	42	48	52	58	63	
Side groin height	H _{2 max.}	16	19	21	24	29	
height	H _{1 max} .	24	27	29	32	37	
Bearing sea	ating B ₁ ^{+0,15} _{+0,05}	28	32	36	40	45	
Bearing sea	ating B ₁ +0,15 +0,05	28	32	36	40	45	



_	:	വ
г	Ю	ے,

			Fig.1							Fig.2	
Dimer	sions								Fig.	Designation	Weight
Tw	La	Υ	Ε	L	d ₁	d ₂	dз	d ₄			
mm			***						_		kg
68,4	89,9 89,9	98,4 98,4	30 30	16,2 28,2	25 30	9,5 11	11,36 12,6	16 16	2 1	LP102-68,4 LP110-68,4	0,216 0,331
75	96,5 96,5	109 109	34 34	16,2 28,2	25 30	9,5 11	11,36 12,6	16 16	2 1	LP102-75 LP110-75	0,246 0,372
82,5	104 104	124,3 124,5	42 42	28,2 22,2	30 19	11 11	12,6 12,6	16 16	1 1	LP110-82,5 LP113-82,5	0,379 0,177
100	121,5	150	50	35,2	25	11	12,6	16	1	LP101A-100	0,338
110	131,5	172	62	35,2	25	11	12,6	16	1	LP101-110	0,442
120	141,5	181,8	62	35,2	25	11	12,6	16	1	LP101-120	0,452
130	151,5 151,5 151,5 151,5	172 172 172 192	42 42 42 62	28,2 22,5 22,2 35,2	30 19 19 25	11 9,5 11 11	12,6 12,6 12,6 12,6	16 16 16 16	1 1 1	LP110-130 LP110-130F2 LP113-130 LP101-130	0,434 0,187 0,191 0,462
140	161,5	201,8	62	35,2	25	11	12,6	16	1	LP101-140	0,472
150	171,5	212	62	35,2	25	11	12,6	16	1	LP101-150	0,482
160	181,5	222	62	35,2	25	11	12,6	16	1	LP101-160	0,492
180	201,5	242	62	35,2	25	11	12,6	16	1	LP101-180	0,512
200	221,5	262	62	35,2	25	11	12,6	16	1	LP101-200	0,532

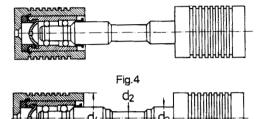
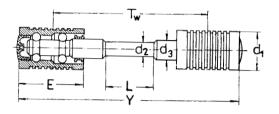



Fig.5

Fig.6

Dimen	siuni								Fig.	Designation	Weight
Tw	La	Υ	Ε	L	ď1	d ₂	d ₃	d ₄			
mm											kg
75	96,5 96,5		21,5 21,5	22,5 16,2	16 16	11 9,5	12,6 11,36		3 3	LP101-75F2 LP102-75F20	0,077 0,080
82,5	104 104 104 104	124,5 124,5	21,5 42 21,5 42	22,5 22,5 16 16	16 19 16 19	11 11 9,5 9,5	12,6 12,6 12,6 12,6	16 16	3 4 5 6	LP101-82,5F2 LP101-82,5F26 LP101-82,5F4 LP101-82,5F46	0,077 0,153 0,061 0,153
90	111,5		21,5		16	12,6	12,6		3	LP101-90F2 ¹⁾	0,131
1) Loc	ked with o	entral sie	eve with d	= 14 8 21	nd I = 8	6					

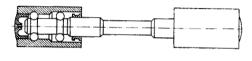


Fig.7

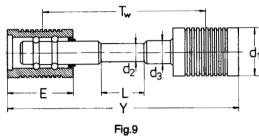
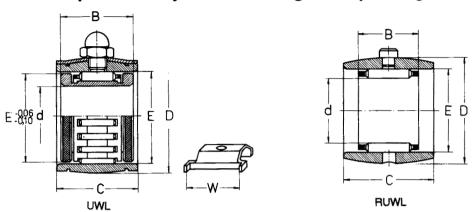

Fig.8

		Fig.7				Fig.8					
sions						Fig.	Designation	Weight			
Υ	Ε	L	d ₁	d ₂	d ₃						
								kg			
LP132											
97	32	16,2	25	9,5	11,36	8	LP132-65	0,216			
100,4	32	16,2	25	9,5	11,36	8	LP132-68,4	0,224			
107	32	16,2	25	9,5	11,36	8	LP132-75	0,229			
114,5	32	16,2	25	9,5	11,36	8	LP132-82,5	0,235			
122	32	16,2	25	9,5	11,36	8	LP132-90	0,241			
132	32	16,2	25	9,5	11,36	8	LP132-100	0,249			
LP302											
95	30	16,2	19	9,5	11,36	7	LP302-65	0,115			
98,4 100,4	30 32	16,2 16,2	19 25	9,5 9,5	11,36 11,36	7 8	LP302-68,4 LP302A-68,4	0,118 0,223			
105 107	30 32	16,2 16,2	19 25	9,5 9,5	11,36 11,36	7 8	LP302-75 LP302A-75	0,123 0,228			
112,5	30	16,2	19	9,5	11,36	7	LP302-82,5	0,129			
120	30	16,2	19	9,5	11,36	7	LP302-90	0,135			
130	30	16,2	19	9,5	11,36	7	LP302-100	0,143			
	Y LP132 97 100,4 107 114,5 122 132 LP302 95 98,4 100,4 105 107 112,5 120	Y E LP132 97 32 100,4 32 107 32 114,5 32 122 32 132 32 LP302 95 30 98,4 30 100,4 32 105 30 107 32 112,5 30 120 30	Y E L LP132 97 32 16,2 100,4 32 16,2 107 32 16,2 114,5 32 16,2 122 32 16,2 132 32 16,2 LP302 95 30 16,2 98,4 30 16,2 100,4 32 16,2 100,4 32 16,2 105 30 16,2 107 32 16,2 112,5 30 16,2 120 30 16,2	Prince Y E L 100,4 32 16,2 25 100,4 32 16,2 25 114,5 32 16,2 25 1122 32 16,2 25 132 32 16,2 25 132 32 16,2 25 132 32 16,2 25 132 32 16,2 25 132 32 16,2 25 132 32 16,2 25 132 32 16,2 25 132 32 16,2 25 132 132 32 16,2 25 132 132 32 16,2 25 132 132 32 16,2 25 132 132 30 16,2 19 107 32 16,2 25 112,5 30 16,2 19 112,5 30 16,2 19 120 30 16,2 19	Prioring Fig. 1. Fig.	Prince Y E L Description LP132 97 32 16,2 25 9,5 11,36 100,4 32 16,2 25 9,5 11,36 114,5 32 16,2 25 9,5 11,36 1122 32 16,2 25 9,5 11,36 122 32 16,2 25 9,5 11,36 132 32 16,2 25 9,5 11,36 132 32 16,2 25 9,5 11,36 132 132 16,2 25 9,5 11,36 134 135 136 137 138 138 139 148 158 158 158 158 158 158 158 158 158 15	Fig. Y E L d ₁ d ₂ d ₃ — LP132 97 32 16,2 25 9,5 11,36 8 100,4 32 16,2 25 9,5 11,36 8 107 32 16,2 25 9,5 11,36 8 114,5 32 16,2 25 9,5 11,36 8 122 32 16,2 25 9,5 11,36 8 132 32 16,2 25 9,5 11,36 8 132 32 16,2 25 9,5 11,36 8 LP302 95 30 16,2 19 9,5 11,36 7 98,4 30 16,2 19 9,5 11,36 7 100,4 32 16,2 25 9,5 11,36 7 100,4 32 16,2 25 9,5 11,36 7 100,4 32 16,2 25 9,5 11,36 7 107 32 16,2 25 9,5 11,36 8 105 30 16,2 19 9,5 11,36 7 107 32 16,2 25 9,5 11,36 8 112,5 30 16,2 19 9,5 11,36 7 120 30 16,2 19 9,5 11,36 7	Fig. Designation Y E L d ₁ d ₂ d ₃ LP132 97 32 16,2 25 9,5 11,36 8 LP132-65 100,4 32 16,2 25 9,5 11,36 8 LP132-75 114,5 32 16,2 25 9,5 11,36 8 LP132-75 114,5 32 16,2 25 9,5 11,36 8 LP132-82,5 122 32 16,2 25 9,5 11,36 8 LP132-90 132 32 16,2 25 9,5 11,36 8 LP132-90 132 32 16,2 25 9,5 11,36 8 LP132-100 LP302 95 30 16,2 19 9,5 11,36 7 LP302-68,4 100,4 32 16,2 25 9,5 11,36 7 LP302-68,4 100,4 32 16,2 25 9,5 11,36 8 LP302A-68,4 105 30 16,2 19 9,5 11,36 7 LP302-68,4 105 30 16,2 19 9,5 11,36 8 LP302A-68,4 105 30 16,2 19 9,5 11,36 7 LP302-65 112,5 30 16,2 19 9,5 11,36 7 LP302-75 112,5 30 16,2 19 9,5 11,36 7 LP302-75 112,5 30 16,2 19 9,5 11,36 7 LP302-82,5 120 30 16,2 19 9,5 11,36 7 LP302-82,5	Fig. Designation Weight Y E L d ₁ d ₂ d ₃ kg LP132 97 32 16,2 25 9,5 11,36 8 LP132-65 0,216 100,4 32 16,2 25 9,5 11,36 8 LP132-75 0,229 114,5 32 16,2 25 9,5 11,36 8 LP132-82,5 0,235 122 32 16,2 25 9,5 11,36 8 LP132-90 0,241 132 32 16,2 25 9,5 11,36 8 LP132-90 0,241 132 32 16,2 25 9,5 11,36 8 LP132-100 0,249 LP302 95 30 16,2 19 9,5 11,36 7 LP302-65 0,115 98,4 30 16,2 19 9,5 11,36 8 LP302-66,4 0,118 100,4 32 16,2 25 9,5 11,36 8 LP302-66,4 0,223 105 30 16,2 19 9,5 11,36 7 LP302-66,4 0,223 105 30 16,2 19 9,5 11,36 7 LP302-66,4 0,223 105 30 16,2 19 9,5 11,36 7 LP302-66,4 0,223 105 30 16,2 19 9,5 11,36 7 LP302-75 0,228 112,5 30 16,2 19 9,5 11,36 7 LP302-82,5 0,129 120 30 16,2 19 9,5 11,36 7 LP302-82,5 0,129		

Dimen	sions						Fig.	Designation	Weight	
Tw	Y	E	L	d ₁	d ₂	d ₃				
mm							_		kg	
Series	LP314									
68,4	102,4	34	22,2	19	11	12,6	7	LP314-68,4	0,129	
75	109 109	34 34	22 21	19 19	11 11,5	12,6 12,6	7 7	LP314-75 LP314A-75F2	0,135 0,136	
82,5	116,5	34	22,2	19	11	12,6	7	LP314-82,5	0,142	
90	124	34	22,2	19	11	12,6	7	LP314-90	0,149	
100	134	34	22,2	19	11	12,6	7	LP314-100	0,158	
Series	LP315									
82,5	122,5	40	22,5	19	11	12,6	7	LP315-82,5	0,157	
100	140	40	22,5	19	. 11	12,6	7	LP315-100	0,175	
110	150	40	22,5	19	11	12,6	7	LP315-110	0,185	
130	170	40	22,5	19	11	12,6	7	LP315-130	0,204	
Seria l	_P316									
68,4	102,4	34	28,2	19	11	12,6	7	LP316-68,4	0,127	
75	109	34	28,2	19	11	12,6	7	LP316-75	0,133	
	LP317									
82,5	122,5	40	28,2	19	11	12,6	7	LP317-82,5	0,156	
90	130	40	28,2	19	11	12,6	7	LP317-90	0,164	
100	140	40	28,2	19	11	12,6	7	LP317-100	0,174	
110	150	40	28,2	19	11*	12,6	7	LP317-110	0,184	
130	170	40	28,2	19	11	12,6	7	LP317-130	0,203	



							,			
Dimen							Fig.	Designation	Weight	
w	Υ	E	L	d ₁	d ₂	d ₃				
nm							_		kg	
75	114	39	28	40	12,6	15	9	LP701-75	0,733	
32,5	121,5	39	28	40	12,6	15	9	LP701-82,5	0,743	
100	145	45	28	40	12,6	15	9	LP701-100	0,754	
20	165	45	28	40	12,6	15	9	LP701-120	0,768	
140	185	45	28	40	12,6	15	9	LP701-140	0,796	
150	195	45	28	40	12,6	15	9	LP701-150	0,810	
160	205	45	28	40	12,6	15	9	LP701-160	0,874	
80	225	45	28	40	12,6	15	9	LP701-180	0,852	

Lower pressure cylinder bearings for spinning machines

Dimen	sions					Basic r	adial	Designation	Weight	
d	D	D ₁	С	В	w	dyn. Cr	stat. Cor			
mm						kN		_	kg	
14,2	28 28 28 28	24 24 24 24	22 22 22 22 22	16,6 16,6 16,6 16,6	20,2 22,2 24,2 25,2	8,5 8,5 8,5 8,5	10,5 10,5 10,5 10,5	UWL28A20 UWL28A22 UWL28A24 UWL28A25	0,065 0,065 0,065 0,065	
16	24	20	21	13		9,1	11,8	RUWL2421TN	0,026	
16,5	28 28 28 28	24 24 24 24	22 22 22 22	19 19 19 19	20,2 22,2 24,2 25,2	10,4 10,4 10,4 10,4	13,5 13,5 13,5 13,5	UWL2820 UWL2822 UWL2824 UWL2825	0,059 0,059 0,059 0,059	
19	32 32 32 32 32 32	27 27 27 27 27 27	23 23 23 23 23 23	20 20 20 20 20	20,2 22,2 24,2 25,2 28,2	12,2 12,2 12,2 12,2 12,2	16,3 16,3 16,3 16,3 16,3	UWL3220 UWL3222 UWL3224 UWL3225 UWL3228	0,080 0,080 0,080 0,080 0,080	
	36 36 36 36	30 30 30 30	25 25 25 25	22 22 22 22 22	20,2 22,2 24,2 26,2	14,1 14,1 14,1 14,1	17,8 17,8 17,8 17,8	UWL3620 UWL3622 UWL3624 UWL3626	0,125 0,125 0,125 0,125 0,125	
23	40 40 40 40	33 33 33 33	27 27 27 27	23,5 23,5 23,5 23,5	24,2 25,2 26,2 30,2	15,8 15,8 15,8 15,8	21,2 21,2 21,2 21,2	UWL4024 UWL4025 UWL4026 UWL4030	0,165 0,165 0,165 0,165	
25	45	37	30	25	28,2	21,1	28.8	UWL4528	0,220	

Deep groove ball bearing, double row, for textile machines

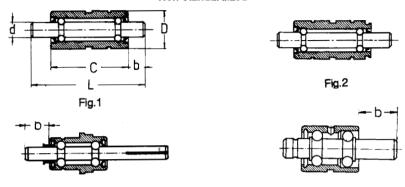


Fig.3

Fig.4

Dimens	imensions		Basic radial Fig.		Designation	Weight				
d	D	L	С	b	dyn. Cr	stat. Cor				
mm					kN		_		kg	
7,5	16	50	25	17	1,05	0,2	4	RT1625TN	0,033	
8,1	24 24	86 114,5	34,6 44,5	15,4 19	2,4 2,4	1,4 1,4	3 3	RT2134TN RT2144TN	0,094 0,129	
9	19	51	25	18	1,75	0,3	4	RT1925TN	0,048	
11	24,9 24,9 24,9	95 95 95	55,1 55,1 55,1	19,95 19,95 19,95	4,75 4,75 4,75	3,5 3,5 3,5	2 1 1	RT2555ATN RT2555TN RT2555TNW7	0,179 0,178 0,179	
14,15	30 30	94 94	57,5 57,5	17,5 17,5	5,1 5,1	3,9 3,9	1	RT3057TN RT3057TNW7	0,286 0,286	

Fig.10

Deep groove ball bearing, double row, for textile machines

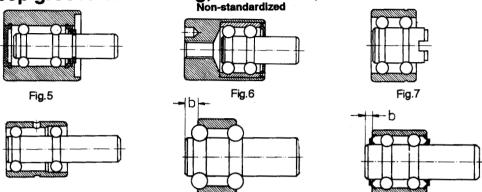
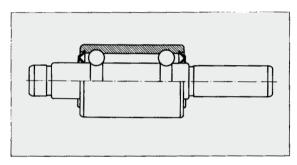


Fig.9

Fig.8

Dimens d	ions D	L	С	b	Basic r load dyn. C _r	stat. C _{Or}	Fig.	Designation	Weight	
mm					kN		_		kg	
8	23	37	25	12	2,4	1,5	5	RT2325TN	0,067	
9	19	39,5	21	18,5	3,5	2,3	8	RT1921TN	0,038	
11	24 25,5	34 48	21 34	13 14	4,7 4,75	3,5 3,5	5 6	RT2421TN RT2534ATN	0,058 0,118	
11,2	22	33,5	10,15	4,1	4,8	3,3	9	HT2210TN	0,044	
13,75	28 28	21,5 21,5	17,5 17,5	4	5,8 5,8	4	7 7	RT2817TN RT2817TNC6	0,063 0,063	
15,92	30	53,2	25	3	7	5,2	10	RT3025-2RS	0,138	



Water pumps bearings

Bearings for water pumps are economical, simple in design and provide satisfactory reliability for the industry of motor vehicles (cars, trucks and tractors).

The figure below shows their design:

Designation

The designation of bearings for water pumps consist of the prefix P followed by the value of the shaft diameter rounded to a whole number, outside diameter rounded to a whole number, suffix 01...10 which represents various lengths L for the same shaft dimensions and outside diameter.

Suffix A represents the repair dimension d of the shaft (increased with 0,047 or 0,051).

Design

Bearings for water pumps consist of a shaft which substitutes the inner ring. It is manufactured of case-hardening alloy steels with a minimum layer of 0,3 mm after grinding. It also has an outer ring manufactured of steels for bearings, two ball cages and seals.

As these bearings are sealed, the producers supplies them filled with the grease necessary for all the operating period.

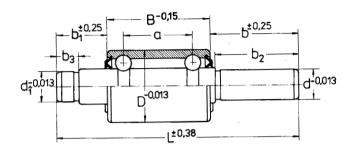
Bearings for water pumps are manufactured in two versions, namely:

- basic design
- maintenance design, suffix A

Tolerances and radial clearance

The tolerance for all dimensions of these are the same and are given on bearing design.

Radial clearance is also the same for the entire bearing range and corresponds to the radial clearance C3 of deep groove ball bearings, single row, of 0,005 - 0,020 mm respectively. At request, these bearings can be manufactured with other values of the radial clearance.


Equivalent dynamic and static radial loads

Equivalent dynamic and static radial loads can be calculated considering the bearing for water pumps as an assembly of two single row deep groove ball bearings having distance "a" between their raceway.

Basic dynamic and static loads C_{r} and C_{0r} of both bearings are given in tables. The equations and factors are identical to those for single row deep groove ball bearings and are given

Water pump bearings

Dimens	ions								Basic load	radiai	Speed limit	Designation	Weigh
d	D	d ₁	L	В	b	b ₁	b ₂	b ₃	dyn. C _r	stat. C _{Or}	grease		
mm									kN		min ⁻¹		kg
15,918	30 30 30 38,1 38,1	15,918 15,918 15,918 15,918 15,918	105,5 110,9 98 112,65 120,65	38,9 38,9 38,9 41,4 41,4	41,8 47 42,1 42,68 45,85	24,8 25 17 28,57 33,4	39,62 43,31	25,4 15,87	10 10 10 15 15	5,35 5,35 5,35 8,45 8,45	8 500 8 500 8 500 8 500 8 500	P1630-02 P1630-03 P1630-01 P1638-01 P1638-02	0,24 0,25 0,23 0,39 0,41
	38,1 38,1 38,1 38,1 38,1	15,918 15,918 15,918 15,918 15,918	132,08 136,4 143,51 146,05 152,9	54,1 54,1 54,1 54,1 54,1	48,14 46,1 58,55 55,63 53,59	29,84 36,2 30,86 36,32 45,21	43,18 43,43 42,67 51,56 41,48	12,32 12,32 12,32 13,72 28,45	15 15 15 15 15	8,45 8,45 8,45 8,45 8,45	8 500 8 500 8 500 8 500 8 500	P1638-03 P1638-05 P1638-06 P1638-07 P1638-08	0,32 0,46 0,48 0,48 0,48
	38,1 38,1 38,1	15,918 15,918 18,96	152,9 161,92 135,64	54,1 54,1 54,1	52,45 72,26 49,66	46,35 35,56 31,88	37,7 70,1 47,24	28,57 15,24	15 15 15	8,45 8,45 8,45	8 500 8 500 8 500	P1638-09 P1638-10 P1638-04	0,49 0,50 0,48
15,965	30	15,965	108,74	38,9	42	27,84	37,5		10	5,35	8 500	P1630-05A	0,25
15,969	38,1 38,1 38,1 38,1 38,1	15,918 15,918 15,918 15,918 15,918	120,65 132,08 136,4 143,51 146,05	41,4 54,1 54,1 54,1 54,1	45,85 48,14 46,1 58,55 55,63	33,4 29,84 36,2 30,86 36,32	43,31 43,18 43,43 42,67 51,56	15,87 12,32 12,32 12,32 13,72	15 15 15 15 15	8,45 8,45 8,45 8,45 8,45	8 500 8 500 8 500 8 500 8 500	P1638-02A P1638-03A P1638-05A P1638-06A P1638-07A	0,41 0,42 0,46 0,48 0,48
	38,1 38,1 38,1 38,1 38,1	15,918 15,918 15,918 15,969 19,012	152,9 152,9 161,92 112,65 135,64	54,1 54,1 54,1 41,4 54,1	53,59 52,45 72,26 42,68 49,66	45,21 46,35 35,56 28,57 31,88	41,48 37,7 70,1 39,62 47,24	28,45 28,57 15,24 25,4	15 15 15 15 15	8,45 8,45 8,45 8,45 8,45	8 500 8 500 8 500 8 500 8 500	P1638-08A P1638-09A P1638-10A P1638-01A P1638-04A	0,48 0,49 0,50 0,39 0,48
20	47	20	143	58	56,5	28,5	54,5	26,5	13,8	6,29	8 500	P2047-01	0,81

Equivalence

HOOVER

KOYO

FAG

SKF

BBWD395807B BBWD393959AE 885841 885861 885841 WS2443 885825A BBWD395985 WK2520 WK2528-2 WK2537-1 WK2564-3 WK2575-1 885821B 885735 885737 885862 BBWD395969 885821HB 885737 BBWD395981 BBWD395899 BBWD395898 885747 8885747 885857 885865 885858 WK2637 BBWD395900 WK6428-1 885111D-OS2 885111D 8858610S 8858520S 8857370S 8858620S 8857470S WK6520B WK6537-1B WK6564-3B WK6575-1B BBWD395969/VU005 8858570\$ 8858650\$ 8858580\$ 8858410\$ 8857350\$ WK6602-B WK6602-2B WK6637B BBWD395900/VU005 WK6534

614977

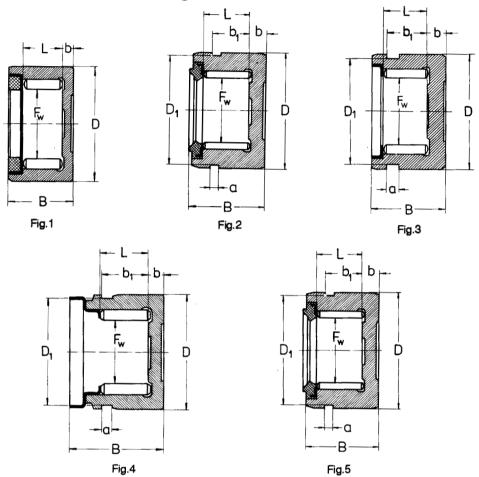
Bearings for cardan drives are needle roller bearings with one-piece rings or pressed sheet rings. They are used in links which transmit rotation movements from one shaft to another under a certain angle with values up to 34°.

Cardan links should meet the following requirements:

- safety operation under proper load
- long rating life without maintenance during operation
- smooth running without working clearance and vibra-
- proper sealing so that lubricant losses and water or impurities penetration should be avoided
 - $-n\varphi < 18000$

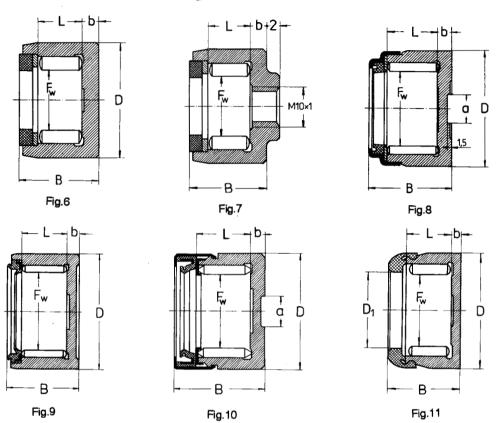
where:

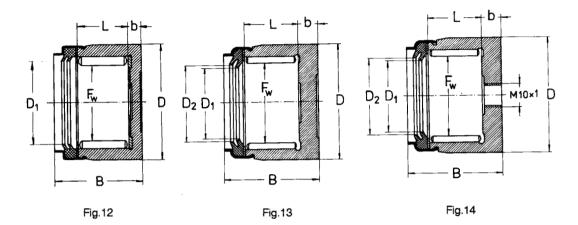
- n cardan drive speed, r/min,
- φ bending angle of the cardan drive, degrees

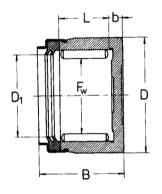

Bearings for cardan drives are generally used in motor vehicle industry (cars, trucks, tractors etc.) and also in other industries, e.g. for agricultural machines, various assemblies, railway vehicles etc.

The needle rollers inscribed envloping diameter, F_w is manufactured to the tolerance class H8 or F8 and the outside diameter D of the rings is manufactured to the tolerance class h5 or p6.

These tolerance classes are selected in dependence to the place of mounting and requirements in operation.


The designs and dimensions given in the catalogue show the wide range of bearings for cardan drives manufactured.


Dime	nsions							Basic load		Fig.	Designation	Weight
Fw	D	В	L	b	b ₁	D ₁	a	dyn. Cr	stat. Cor			
mm								kN				kg
12,6	25 25	16 15	10 9	3,9 3,9	8,8 7,8	23 23	2,7 2,7	12,8 11,9	15,4 14	3 3	704901K 704901K1	0,044 0,041
14,6	25 25	16,6 16	10 10	3,9 3,9	8,8 8,8	23 23	2,7 2,7	12 12	19 19	5 3	704901A 704901B	0,041 0,04
15,2	28	19	13	4,4	11	25,7	2,5	16,6	25,1	2	704902	0,06
16,3	30 30	21 25	14 14	4 4	12,5 12,5	27,5 27,5	3 3	20,3 20,1	29,5 29	2	704702A 704702K	0,075 0,073
18,6	30 30,15	21 21	14 14	4 4	12,5	27,5	3	18 18	34,4 34,4	2	704702B 704702C	0,068 0,072
19,2	32	18	12	3				19,1	28,5	1	704903	0,062



Dimen	ensions						Basic I		Fig.	Designation	Weight
Fw	D	В	L	b	D ₁	а	dyn. C _r	stat. C _{Or}			
mm							kN		_		kg
8,9	17 17	11,8 11,8	6,5 6,5	2,5 2,5			6,13 6,13	7,06 7,06	6 7	491600 491700	0,012 0,013
12	22	16,8	10	3			11,7	15,2	8	804701A ¹⁾	0,030
13,5	22	14	8	2	15,3		9,39	13,6	11	490301	0,020
14,6	25	18	10	3,9	16,6		12	19	11	490203	0,035
16,8	27	17,8	10	2,3	17,7		14,3	21,3	11	490103	0,037
20	32	24,5	16	3,5	20		25,7	42,2	11	704904	0,072
20,67	32	19	12	3			18,4	31,4	8	804103	0,064
22	35	26,5	18	4		10	29,8	52,4	8	804704A	0,104
25	39 39	28 30,5	18 17	5 5		10 10	31,8 25,9	59,3 45,1	8 10	804705A 804805K1	0,134 0,136
25,42	38 38	21,9 23,9	14 16	3,5 3,5			24 26,8	47 54,2	9	490705 490805	0,100 0,110
29,54	44 44	25,5 27,5	16 18	4 4			31,8 35	62,4 70,7	9 9	490906 491006	0,155 0,167
1) With	out seal										

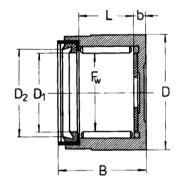
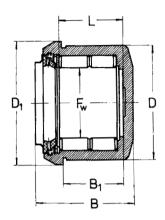
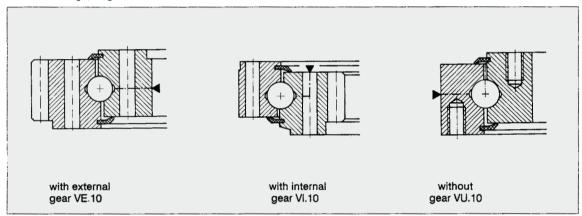



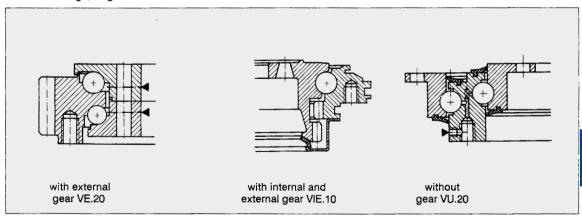
Fig.15

Fig.16

Dimens	ions					Basic radial load			Fig.	Designation	Weight
Fw	D	В	L	b	D ₁	D ₂	dyn. Cr	stat. Cor			
mm							kN		_		kg
23,83	38 38	32,15 32,15	20 20	4,55 4,55	27,2 27,5	27,7	34 34	63,7 63,7	16 15	490405 490405B	0,140 0,104
26,25	38 38	32,3 32,3	20 20	5 5	27,2 27,2	27,7 27,7	32,6 32,6	70,6 70,6	13 14	490505 490505K	0,162 0,157
27,82	44 44	32,5 32,5	20 20	3,5 3,5	32,9 33	33,6	33,7 33,7	74,9 75	16 15	490306 490306B	0,180 0,180
28,61	44	35,7	24	3,9	31,2	32,3	43,5	92,5	13	490106	0,212
31	45 45	37,5 37,5	20 20	7,5 7,5	32,9 32,9	33,6 33,6	35,7 35,7	83,4 83,4	13 14	490606 490606K	0,196 0,191
34,34	50 50	39,8 39,7	24 24	5,5 5,5	35,2 38,5	38,4	48 48	111 111	17 12	491107 491107A	0,272 0,262
37,17	57	43,1	25	7	41,5		63,6	123	12	490107	0,407
41,3	60	46	30	6,5	47,5		82,4	165	12	490608	0,444

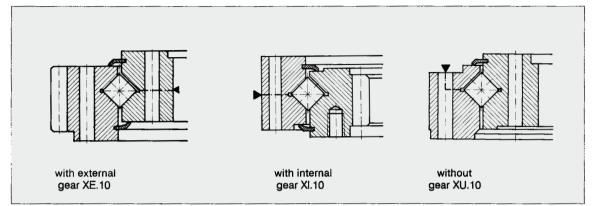
Dimens	enoie				load			sic radial Desig- nd nation		Weight
Fw	D	В	L	B ₁	D ₁	D ₂	dyn. Cr	stat. Cor		
mm							kN		_	kg
40,1	65	55,2	33	31,5	72	44,4	96,9	143	491808A	0,778
51,5	83	71,2	45	44,5	90	57,4	164	255	492210A	1,55
60,5	95	79,3	51	49,5	105	66,6	213	349	491912A	2,28
70	110	88,5	58	56	122	76,8	264	450	492314A	3,28
76,31	120	96	65	62,5	135	84,8	314	544	490115	4,45
82,7	130	107,5	74	70	147	93	388	691	490117	6,13



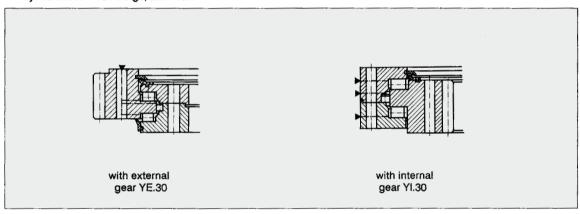

Slewing bearings

Slewing bearings are manufactured in a wide range of constructive designs, with various dimensions. We further mention the most usual bearing sizes:

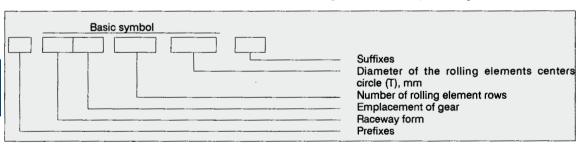
- ball bearings, single row



- ball bearings, single and double row



Crossed tapered roller bearings


- cylindrical roller bearings, three row

Slewing bearings can take over heavy axial loads with magnitudes up to 10% of the axial loads and also tilting moments.

Designation

These bearings are differently designated in comparison to the internationally standardized bearings. In case of the bearings manufactured by the designation consists of:

Prefixes

If other materials than heat treatment steels are used, the prefixes are the same as in case of standardized bearings (see page 110).

Basic symbols

Considering the raceway form:

V

- ball bearings

X

crossed cylindrical roller bearings
 cylindrical roller bearings, three row

Considering gearing emplacement:

Ε

- with external gear

1

- with internal gear

EI with internal and external gearing u

- without gearing

Considering the number of rolling elements rows:

10 - single row 20 - double row 30 - three row

Suffixes

A, B, C, D - versions of basic constructive designs

- steels or sinterized powders distance rings between rolling elements

TN - plastics distance rings between the rolling elements

- no distance rings between rolling elements

- light alloy cages of separable design

F81 - surface hardened gearing

Example of designation:

VI.10.1380ATNF81 Slewing ball bearings (V) with internal gear (I) single row balls (10), with ball

centers circle diameter of 1380 mm, design (A), with plastics distance rings (TN) between balls and surface hardened gear (F81).

Design

Slewing bearings consist of one or two inner rings and one or two outer rings made generally of heat treatment alloy steels 41MoCr11, according to the national standard To obtain an increased strength, the semifinished rings are quenched and tempered.

The rolling elements (balls or rollers) are placed between the two rings. They are manufactured of bearings steels and are separated by steel or plastics (TN) distance rings. The chemical content of these materials is given in the chapter "Materials for rolling bearings"

To avoid the foreign bodies to penetrate the bearings. these are sealed with rubber seals or, sometimes, with labyrinth seals.

Lubrication during operation is provided by greasers either on the outer ring or on the inner ring. Their emplacement is simply designated by the symbol ".".

These bearings can also be manufactured with gear on the outer or inner ring, depending on application. Gear material can be only quenched and tempered or high frequency surface hardened.

The raceways of these bearings are also high frequency surface hardened. Ready made slewing bearings are protected against corrosion by painting all surfaces, excepting the gear which is coated with a thin uniform layer of grease. Usually, these surfaces are coated with ground. In this case, the user will paint the bearing after mounting with the same colour as the equipment.

Slewing bearings are fastened to the rotating assemblies by screws. For this purpose, there are some holes provided in the rinas.

Fastening screws

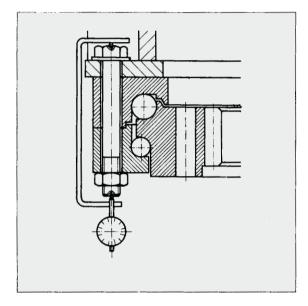
The screws used for bearing fastening should be selected from the groups of mechanical characteristics 8.8, 10.9 or even 12.9.

The passing hole diameter for screws, clamping load and tightening torque are given in table 1.

Considering the friction between nut and screw, the nut

Mechanical characteristics of fastening screws

Table 1


Strenght clas	38		8.8		10.9		12.9	
Yield limit, Rp0,2, N/mm	2		640 for ≤ M16 660 for > M1		940		1100	
Metric ISO thread	Cross sectional area of minor dia.	Passing hole diameter	Clamping load	Theoretical tightening torque	Clamping load	Theoretical tightening torque	Clamping load	Theoretical tightening torque
	mm ²	mm	kN	Nm	κN	Nm	kN	N m
M16	144	18	72	215	106	310	124	370
M18	175	20	91	300	129	430	151	510
M20	225	22	117	430	166	620	194	720
M22	282	24	146	580	208	830	243	970
M24	324	26	168	740	239	1 060	280	1 240
M27	427	30	221	1 100	315	1 550	370	1 850
M30	519	33	270	1 500	385	2 100	450	2 500
M33	647	36	335		480		560	
M36	759	39	395		560		660	
M39	913	42	475		670		790	
M42	1 045	45	542		772		904	
M45	1 224	48	635		905		1 059	
M48	1 377	52	714		1 018		1 191	
M52	1 652	56	857		1 221		1 429	
M56	1 905	62	989		1 408		1 648	
M60	2 227	66	1 156		1 647		1 927	

frontal surface and its adjoint part, the actual value of the nut tightening torque can be approximated to 90% of the theoretical tightening moment.

Considering that the extension of the screws with dimensions greater than M30 cannot be well enough controlled by the tightening torque, they should be tightened until the value of 70% of the material yield limit reached.

Screw extension can be checked by means of a device as shown in the figure below.

bearing size, section and heat treatment.

Slewing bearings are manufactured with radial and axial clearance which should be according to the values given in table 2. These clearances are theoretical values and are determined considering the median sizes of the component parts, which are measured before mounting. (Raceway mean diameters and rolling elements emplacement mean diameters).

Basic static axial load

Basic static axial load can be calculated depending on the bearing type, using the following equations:

- for ball bearings:

$$C_{0a} = f_0 f_{0H} Z D_w^2 \sin \alpha \times 10^{-3}, kN$$

where:

f₀ = coefficient, table 3

foH = coefficient, table 4

Z = number of balls arranged on a single row

D_w = roller diameter, mm

 α = contact angle, degrees

- for cylindrical roller bearings

$$C_{0a} = 220 f_{0H} \left(1 - \frac{D_w \cos \alpha}{T} \right) Z D_w L_w \sin \alpha \times 10^{-3}, kN$$

where:

foH = coefficient, table 4

D_w = roller diameter, mm

T = rollers emplacement diameter, mm

Lw = roller lenght, mm

Z = number of cylindrical rollers

 α = contact angle, degrees

Tolerance and clearance

The tolerances of slewing bearings are not standardized. Maximum ovalness for external gear and minimum ovalness for internal gear are marked with colour on three neighboring teeth. The value of ovalness depends on the

Radial and axial clearance

Table 2

					TODIC E	
of rolling el			learance	Radial clearance		
over	up to	min.	max.	min.	max.	
mm						
500	630	0,1	0,3	0,12	0,26	
630	800	0,1	0,3	0,20	0,35	
800	1 000	0,2	0,4	0,25	0,45	
1 000	1250	0,2	0,5	0,30	0,55	
1 250	1600	0,2	0,5	0,35	0,65	
1 600	2 000	0,3	0,6	0,40	0,80	
2 000	2 500	0,4	0,8	0,45	0,90	
2 500	3150	0,5	0,9	0,50	1,00	
3 150	4 000	0,5	0,9	0,55	1,10	
4 000	5 000	0,5	1,0	0,60	1,20	
5 000	6300	0,5	1,0	0,65	1,30	
6300	8 000	0,6	1,2	0,70	1,40	
8 000	10 000	0,6	1,2	0,75	1,50	
10 000	-	0,7	1,4	0,80	1,60	

Values for coefficient fo

Table 3

D _W cosα T	to	
0	61,6	
0,01	60,8	
0,02	59,9	
0,03	59,1	
0,04	58,3	
0,05	57,3	
0,06	56,7	

Values for coefficient for

Table 4

Hard	ness HRC	60	58	55	50	45	40	35
foH	Ball bearings	1,0	1,0	0,95	0,75	0,60	0,50	0,40
	Roller bearings	1,0	1,0	1,0	0,95	0,80	0,65	0,50

Tilting moment

Tilting moment can be calculated depending on 'the basic static axial load and emplacement diameter of rolling elements, using the equation:

$$M_r = \frac{C_{0a} T}{4}, \, kN \, m$$

where

Coa = basic static axial load, kN

T = emplacement mean diameter of rolling elements, m

nimum ovalness, in case of internal gear, which are marked with paint on three neighboring teeth should be mounted near the differential-drive pinion. The permissible values of flatness deviations depending on bearing size and type are given in table 5.

If these values cannot be obtained either from the manufacturing point of view or from the economical one, fluid plastics are allowed to be used, as they bind by cooling and compensate for flatness deviations.

After suitable bearing placing the fastening screws should be tightened until the above mentioned values of force and moment are reached following the succession shown below (see table 1). A dynamometrical wrench can be used for tightening.

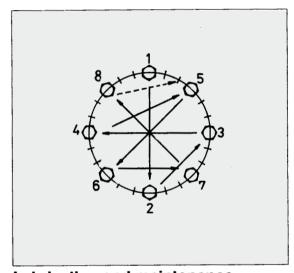
Transport and storing

Considering the specific features of these bearings, their dimensions respectively which exceed in most cases 1 meter and reach even more than 5 meters, some special conditions are required for transport and storing. The main condition which have to be observed during transport is to fasten all bearing parts so that no clearance should exist between them. Thus, contact imprints, which have detrimental influence on bearing operation and its rating life, will be avoided. These bearings should be transported and stored only in horizontal position. Shocks should be avoided.

Mounting of slewing bearings

Special care should be given while mounting these bearings.

The flatness of surfaces on which bearings are to be mounted should be checked by means of a thickness gauge set, after the slewing bearing has been placed on the mounting surface.


When mounting the bearing, the non-hardened area of the raceway (the distance between the beginning and end of the high-frequency surface hardened area) should be considered. It is marked by "C" on the outside or inner surface of both rings.

This part of bearing must be outside the maximum loaded area. The place where the pitch diameter of gear has maximum ovainess, in case of external gear and mi-

Permissible flatness deviations

Table 5

Pitch diamet	~-	Permissible de	niasible deviations							
T T	er	Double row ball slewing bearing	Single row ball slewing bearing	Cylindical coller slewing bearing						
over	up to									
mm										
	1 000	υ,20	0,15	0,10						
1 000	1 500	0,25	0,19	0,12						
1 500	2 900	0,30	0,22	0,15						
2 000	2 500	0,35	0,25	0,17						
2 500	4 000	0,40	0,30	0,20						
4 000	6 000	0,50	0,40	0,30						
6 000	8 000	0.60	0,50	0.40						

Lubrication and maintenance

At delivery (if no special prescriptions mentioned) bearings will be lubricated with grease U 170 Li 2, national standard STAS 8961 both on raceways and gear. The first relubrication of raceways and gear should be done immediately after mounting. Plenty of grease should be used in order to create a continuous layer all over the circumference and also a grease rib under seals or labyrinth.

Grease is necessary to be uniformly distributed. For that reason, bearing should rotate during lubrication. The relubrication interval should be chosen depending on the operating conditions as follows: for ball bearings it is generally of 100 operating hours and for roller bearings of 50 operating hours. In tropical and high moisture environment and in case of continuous rotating movement relubrication should be done once in a week. Lubrication can be less frequent in case of turning machines, e.g. road trailers, tram bogie joints. Relubrication is absolutely necessary before and after a long non-operating period, especially during winter-time. Water should be prevented from penetrating to the raceways, while cleaning the machinery. Then it must be greased abundantly. No further control is necessary excepting the periodical control of fastening screws.

Slewing bearings in applications. Selection of bearing type

Slewing bearings are used in various applications, such as motor cranes, harbour cranes, hydraulic excavators, various rotating platforms, siderurgical equipments, bogies for metropolitan and tram cars, manipulators, foundry equipments etc.

Example

It is necessary to determine the type and size of a slewing bearing used for a crane, as shown in the adjoint figure. The bearing has to support the following forces:

1. For maximum bearing loading, including the wind force:

$$F_{a} = \sum_{i=1}^{n} F_{n} = F_{1} + F_{2} + F_{3} + F_{4} + F_{5} + F_{6} = (3 + 0.8 + 4 + 1.2 + 2 + 2) \times 10^{4} = 13 \times 10^{4} \, \text{N}$$

$$M_r = [(F_1 + F_2)|_{1max} + F_3|_3 - F_4|_4 - F_5|_5 - F_6|_6 + F_7|_7] \times 10^4 =$$

$$= [(3 + 0.8) \times 45 + 4 \times 20 - 1.2 \times 2 - 2 \times 12 - 6 \times 20 + 0.5 \times 1.5] \times 10^4 = 105.35 \times 10^4 \text{ N m}$$

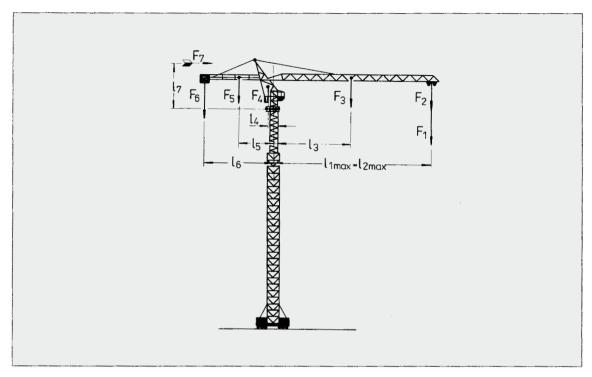
2. For maximum bearing loading with an overload of 25%, without wind force:

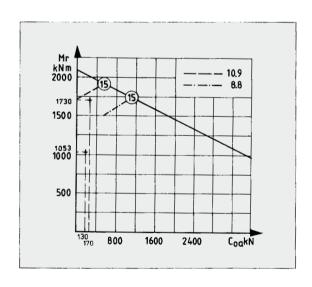
$$F_a = \sum_{i=1}^{n} F_n = F_1 \times 1,25 + F_2 + F_3 + F_4 + F_5 + F_6 = (3 \times 1,25 + 0,8 + 4 + 1,2 + 2 + 2) \times 10^4 = 13,75 \times 10^4 \text{ N}$$

$$M_r = \{(F_1 \times 1, 25 + F_2)|_{1max} + F_3|_3 - F_4|_4 - F_5|_5 - F_6|_6] \times 10^4 =$$

= $\{(3 \times 1, 25 + 0, 8) \times 45 + 4 \times 20 - 1, 2 \times 2 - 2 \times 12 - 6 \times 20] \times 10^4 = 138, 35 \times 10^4 \text{ N m}$

The adequate results obtained at point 2 will be multiplied by an overload coefficient c = 1,25.


Fa' = Fa c =
$$13,75 \times 1,25 \times 10^4$$
 = $17,1875 \times 10^4$ N,
Mr' = Mr c = $138,35 \times 1,25 \times 10^4$ = $172,9375 \times 10^4$ N m.


Beside bearing dimensions and technical data, in this catalogue one can also find diagrams showing the tilting moment and limit values of static loads which are helpful when selecting the proper bearing for certain operating conditions.

After calculating the force F_a and resultant moment M_r , the bearing is selected so that the intersection point of the values of resultant force F_a and moment M_r to be placed under the respective curve (see the following example), also considering the screws used for bearing mounting on the assembly (strenght class 8.8, 10.9 or 12.9).

The values resulting from the calculation of crane load should be placed under the diagram of the bearing which is to be selected. In this case, the designation of one of the bearings which can support these loads is VI.10.1380TNF81. This bearing can be used with screws from the strength class 8.8, in case 1. In case 2, when the value of the overload coefficient is c= 1,25,the bearing should be tightened with screws from the class 10.9, as it results from the diagram

Single row ball slewing bearings with external gear, VE.10 type

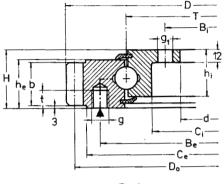


Fig.1

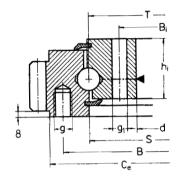
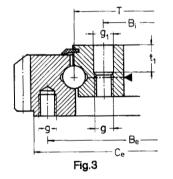
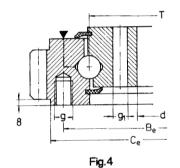




Fig. 2

Dimens	sions													
Т	d	D	Н	B_i	s	C _e	Ci	hį	Вe	h _e	g	91	t	t ₁
mm														
544	434	642	56	462		609	505	46	585	46	M12	18	20	
744	634	834	56	662		807	703	45,5	785	45,5	M12	18	20	
980	886 886 886	1 080 1 082 1 080	82 82 82	922 922 922	979 979 979	1 042 1 045 1 042		55 55 55	1 015 1 015 1 015	73 73 73	M16 M16 M16	18 18 18	30 30 30	30
1 047	915	1 220	100	960	1 048		930	90	1 130	90	M24		50	
1 114	980 980	1 290 1 289	114 114	1 035 1 035		1 240 1 240	985 985	85 85	1 198 1 198	90 90		22 22		
1 140	990	1 296	135	1 026	1 170	1 255		125	1 220	90		23		
1 205	1 075	1 392	100	1 125	1 230	1 207	1 090	90	1 285		M24		50	

grease nipple
1) non equidistant holes

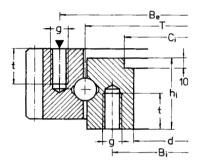


Fig.5

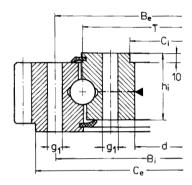


Fig.6

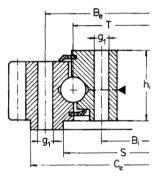
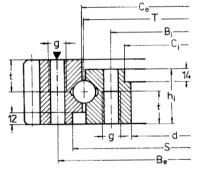
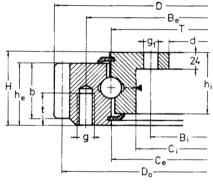


Fig.7




Fig.8

n _i n _e							Greas	e nipples	Designation	Fig.	Dia-	Weight
	n _e	Do	m	Z	b	x m	no.	type			gram posi- tion	
							pcs.	_				kg
14	14	630	6	105	40		4	A2	VE.10.0544F	1	1	40,2
16	16	828	6	138	40	-3	4	A2	VE.10.0744V	1	2	56
30 30 30	30 30 30	1 064 1 048 1 064	8 8 8	133 131 133	50 70 50	+10	5 3 5	A3 A3 A3	VE.10.0980F VE.10.0980AF VE.10.0980BF	2 3 4	3 3 3	120 120 120
36	36	1 200	10	120	90		6	A3	VE.10.1047V	5	4	308
20 32 ¹⁾	20 20	1 280 1 250	5 10	256 125	75 75	+10,5	4 4	A3 A3	VE.10.1114ATN VE.10.1114TN	6 6	6 5	322 319
24	24	1 280	8	160	80		4	A3	VE.10.1140V	.7	7	314
36	36	1 368	12	114	100		4	A1+U3	VE.10.1205V	8	8	406

 $[\]begin{array}{l} n_i = \text{ number of holes in inner ring} \\ n_e = \text{ number of holes in outer ring} \end{array}$

Single row ball slewing bearings with external gear, VE.10 type

·B_e -

Fig. 9

Fig. 10

Dimen	sions													
Т	d	D	Н	B_i	S	$C_{\mathbf{e}}$	$\mathbf{C}_{\mathbf{i}}$	h _i	$B_{\mathbf{e}}$	h _e	g	g 1	t	t ₁
mm														
1 249,8	37 1 107	1 400	88,5	1 145		1 247	1 190	72	1 305	68	M16	22	30	
1 275	1 155	1 456	135	1 195		1 395		130	1 355	112	M24x2	26	40	
1 462	1 330	1 644	142	1 385		1 585		132	1 540	104	M24	30	70	65
1 490	1 300	1 737,6	123	1 372		1 680		118	1 608	113		36		
1 810		2 020 5 2 020	153 163	1 695 1 695		1 970 1 970		142 152	1 930 1 930	105 105		27 27		
2 335	2 220	2 484	120	2 290	2 340	2 425		100	2 384	100	M22		30	
2 348	2 230	2 500	120	2 270		2 450	2 235	105	2 410	100	M20	22	45	
2 660	2 500	2 855,2	185	2 560		2 810	2 610	160	2 760	160		22		
2 985	2 790	3 228	200	2 844				180	3 124	140		33		
3 210	2 990	3 509	190	3 080		3 395	3 000	165	3 340	155		34		
4 320	4 150	4 564	162	4 215				112,5	4 425	145	M24		25	

 $\begin{array}{l} \blacktriangleright \text{ grease nipple} \\ n_i = \text{ number of holes in inner ring} \\ n_e = \text{ number of holes in outer ring} \\ \end{array}$

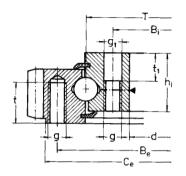


Fig.11

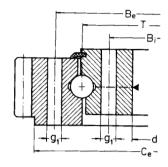


Fig.12

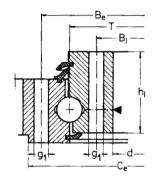
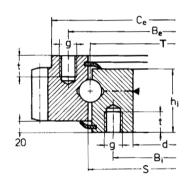
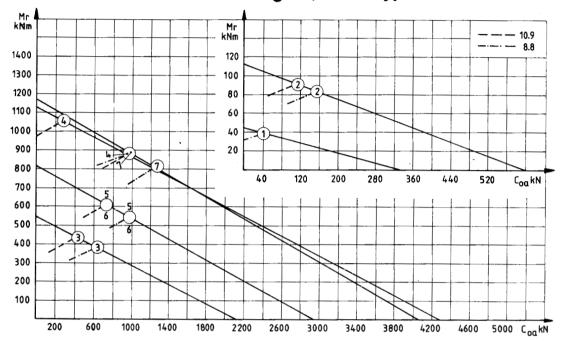
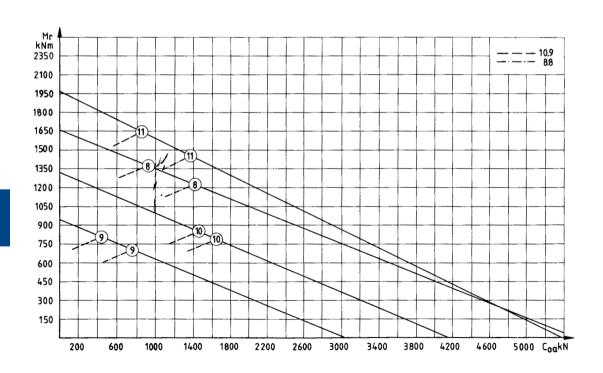


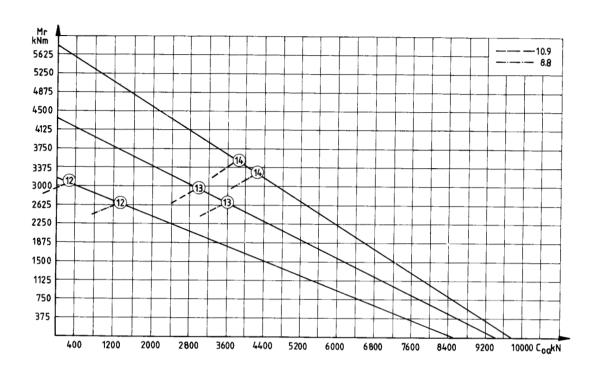
Fig.13

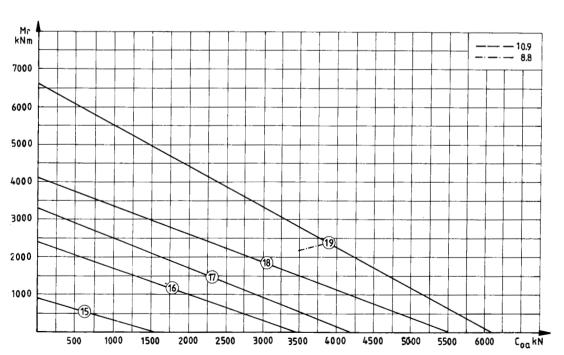


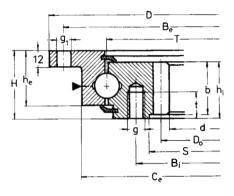

Fig.14


							Greas	e nipples	Designation	Fig.	Dia-	Weight
n _i	n _e	D ₀	m	Z	b	x m	no.	type			gram posi- tion	
							pcs.	_				kg
28	48	1 380	10	138	65		4	A3	VE.10.1250TN	9	9	225
24	12	1 430	14	102	80	-0,5	8	A3	VE.10.1275F	10	10	513
36	36	1 620	12	135	94		4	A3	VE.10.1462TN	11	11	560
39 ¹⁾	40	1 704	12	142	96	+6	5	A3	VE.10.1490TN	12	12	740
32 32	32 32	2 000 2 000	10 10	200 200	90 90		4 4	A3 A3	VE.10.1810TN VE.10.1810ATN	13 13	13 13	856 888
24	24	2 466	9	274	80		4	A3	VE.10.2335V	14	14	633
40	40	2 480	10	248	80		6	A3	VE.10.2348	4	15	694
48	48	2 839,2	2 8	354	80	-3,6	4	A3	VE.10.2660V	6	16	1 520
44	44	3 204	12	267	130		8	A3	VE.10.2985	6	17	2 460
60	60	3 456	18	192	125	+9	6	A3	VE.10.3210	6	18	2 740
8	8	4 536	14	324	85		3	A3	VE.10.4320	5	19	2 124

¹⁾ non equidistant holes




Single row ball slewing bearings with external gear, VE.10 type



Single row ball slewing bearings with internal gear, VI.10 type

B_i --Ce-Be

Fig.1

Fig.2

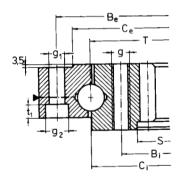


Fig.3

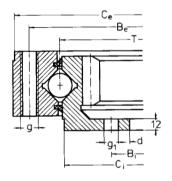
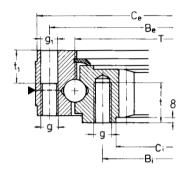



Fig. 4

Dimen	sions														
T	d	D	Н	B_i	s	C _e	C_{i}	hį	$B_{\boldsymbol{e}}$	h _e	g	9 1	92	t	t ₁
mm		-													-
414	326,5	518	56	375	355		,	45,5	490	45,5	M12	18		20	
525	449,36	595	47	495		560	475	43	575	40	M8	8,5	14	13	10
544	445,2	648	56	505	476			45,5	620	45,5	M12	18		20	
625	496	740	59	560	520	660	626	59	700	54	M16	17,5	26		18
768	650	842	77	686		840	758	75	810	59	M12	13			
895	785,2	972	82	845	820	970	892	63	945	78	M16	18		40	39
978	854	1 066	102	926		1 065	957	85	1 035	96	M16	18		35	
980	854 856	1 066 1 066	75 75	926 926	880	1 065 1 065	970 970	65 65	1 035 1 035	70 70	M16 M16	18 18			35 35

grease nipple
1) non equidistant holes

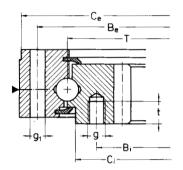


Fig.5

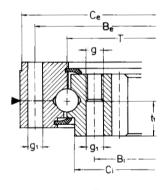


Fig.6

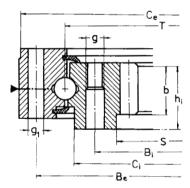


Fig.7

Fig.8

							Greas	e nipples	Designation	Fig.	Dia-	Weight
nį	n _e	D ₀	m	Z	b	x m	no.	type			gram posi- tion	
							pcs.	_				kg
16	15	335	5	67	37,5	**	4	A2	VI.10.0414V	1	1	28,1
12	12	455	3,5	130	35	-0,525			VI.10.0525F	2	2	33,3
25	13	456	6	76			4	A2	VI.10.0544F	1	3	41,4
16	16	504	4	126	50,5		4	А3	VI.10.0625F	3	4	92,1
16	14 ¹⁾	720	4	180	50		4	А3	VI.10.0768F	4	5	75,4
30	30	800	8	100	50		6	АЗ	VI.10.0895FF81	5	6	116
26 ¹⁾	24 ¹⁾	870	10	87	85		4	A3	VI.10.0978TNF81	6	7	178
26 ¹⁾ 26 ¹⁾	24 ¹⁾ 24 ¹⁾	870 864	10 4	87 216	65 50		4	A3 A3	VI.10.0980FF81 VI.10.0980AF	7 8	8 8	137 143

 $\begin{array}{l} n_i = number \ of \ holes \ in \ inner \ ring \\ n_e = number \ of \ holes \ in \ outer \ ring \end{array}$

Single row ball slewing bearings with internal gear, VI.10 type

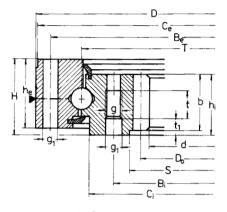


Fig.9

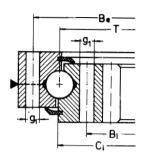


Fig. 10

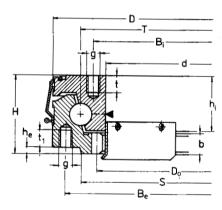


Fig.11

Dime	nsions													
Ţ	d	D	Н	Bį	s	Ce	Ci	hį	Ве	he	g	g 1	t	t ₁
mm														
1 150	986,4 988,8	1 256 1 256	102 102	1 085 1 085	1 045 1 045	1255 1255	1 132 1 132	85 85	1 215 1 215	96 96	M20 M20	22 22	40 40	15 15
1 250	1 090	1 362	79	1 182			1 251	70	1 318	63		22		
1 300	1 250 1 250	1 350 1 350		1 274 1 274	1 282 1 282			60 60	1 330 1 330	12 12	M8 M8		22 22	16 16
1 380	1 171,268 1 172 1 172 1 172	3 1 530 1 530 1 530 1 550	127 127 127 137	1 290 1 290 1 280 1 285	1 240	1410 1410 1410 1410	1 360 1 360 1 360 1 360	107 107 107 114	1 480 1 480 1 480 1 480	114 114 114 114		30 27 33 30		
1 595	1 505	1 650	90	1 540	1 560			64,6	1 620	5,6	M10		15	
1 615	1 408	1 752	140	1 525	1 473	1750	1 610	122	1 705	134		26		

grease nipple
1) non equidistant holes

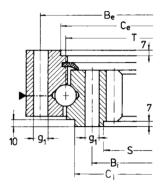


Fig.12

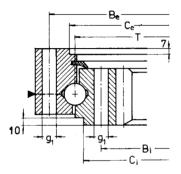


Fig.13

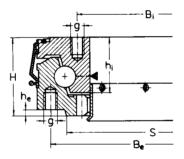
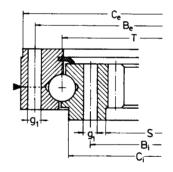
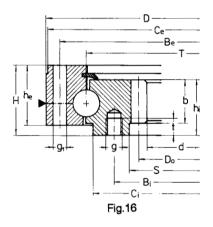


Fig.14




Fig.15

							Greas	e nipples	Designation	Fig.	Dia- gram	Weight
n _i	n _e	D ₀	m	Z	b	x m	no.	type			posi- tion	
							pcs.	_		•		kg
30 30	30 30	1 008 996	12 4	84 249	79 79		5 5	A3 A3	VI.10.1150TNF81 VI.10.1150ATN	9	9	268 265
40	40	1 100	10	110	70	- 5	8	A 3	V!.10.1250TN	10	10	237
30 29 ¹⁾	32 32	1 260 1 260	3 3	420 420	22 22	+2,55 +2,55	1	B1 B1	VI.10.1300AL VI.10.1300L	11 11	11 11	78 78
24 24 38 36	24 24 38 36	1 190 1 176 1 188 1 176	10 14 12 14	119 84 99 84	107 107 107 107	-10,75 -10,75	4	A3 A3 A3 A3	VI.10.1380ATNF81 VI.10.1380TNF81 VI.10.1380CTNF81 VI.10.1380DTNF81		13 12 14 15	575 561 560 615
30	30	1 520	4	380	30		1	B1	VI.10.1595L	14	16	99
40	40	1 428	14	102	115	+3,5	4	A 3	VI.10.1615ATNF81	15	17	656

 $[\]begin{array}{l} n_i = \text{ number of holes in inner ring} \\ n_e = \text{ number of holes in outer ring} \end{array}$

Single row ball slewing bearings with internal gear, VI.10 type Non-standardized

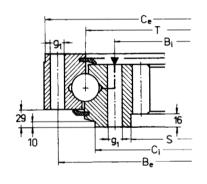


Fig.17

Dimen	sions													
Т	d	D	н	B_{i}	s	Ce	Ci	hi	Вe	he	9	9 1	t	nį
mm									-					
1 615	1 418,4 1 418,4	1 752 1 752	140 140	1 525 1 525	1 473 1 473	1 750 1 750	1 610 1 610	122 122	1 705 1 705	134 134	M24 M24	26 26	50 50	40 40
1 740		1 908 1 908	159 178	1 634 1 655	1 580 1 600	1 905 1 905	1 705 1 705	143 142	1 850 1 850	130 150	M24	27 27	50	40 40
1 750	1 548	1 860	125	1 675	1 610		1 636	125	1 820	90	M16		20	36
1 895,2	1 825	1 990	125	1 925			1 880	32	1 865		M24			34 ¹⁾
2 127,5	2 024	2 275	91	2 076	2 048	2 140	2 050	66	2 206	88	M14		24	35 ¹⁾
2 234	1 974,5	2 414	169	2 120	2 045	2 410	2 206	149	2 345	140		33		48

[►] grease nipple 1) non equidistant holes

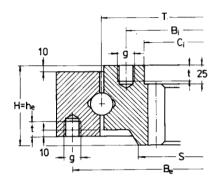


Fig.18

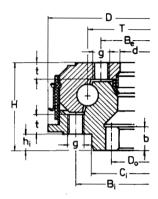


Fig.19

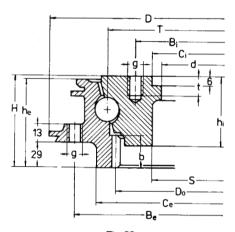
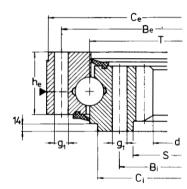
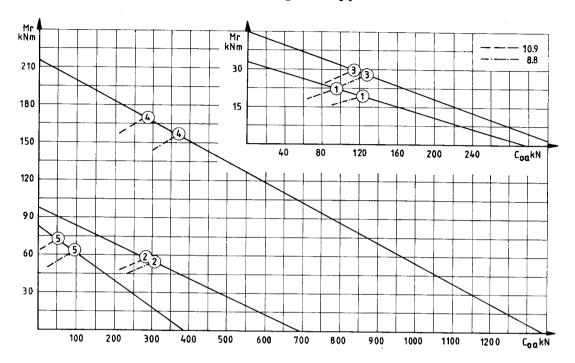
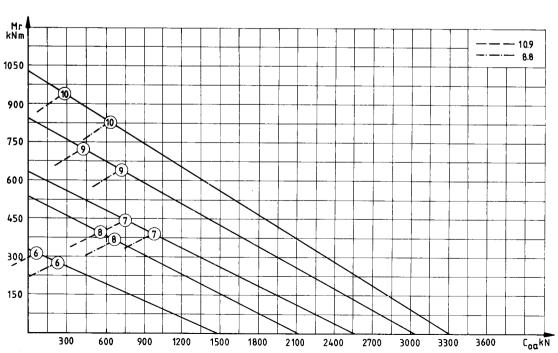
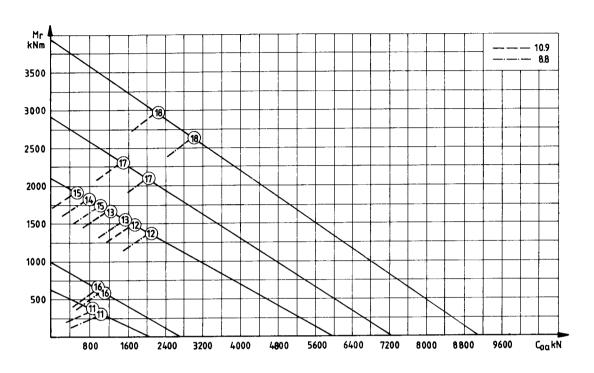


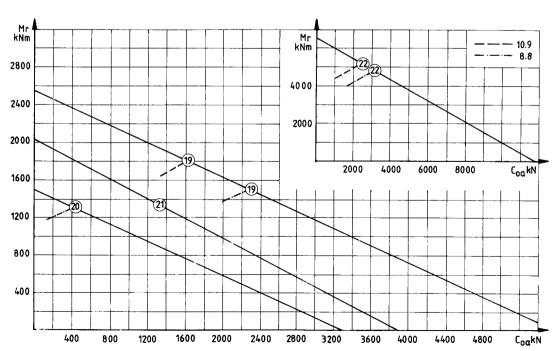
Fig.20


Fig.21

						Greas	se nipples	Designation	Fig.	Dia-	Weight
n _e	D ₀	m	Z	b	x m	no.	type			gram posi- tion	
						pcs.					kg
40 40	1 440 1 440	12 12	120 120	115 115		4	A3 A3	VI.10.1615TN VI.10.1615TNF81	16 16	17 17	670 670
40 40	1 512 1 504	14 16	108 94	127 127	+11,48 +24	4	A3 A3	VI.10.1740ATNF81 VI.10.1740TN	17 16	18 18	922 953
36	1 566	9	174	100				VI.10.1750FF81	18	19	585
36	1 840	5	368	44				VI.10.1895F	19	20	282
35	2 100	5	420	32	+5			VI.10.2128F	20	21	286
48	1 988	14	142	123	+7	6	·A3	VI.10.2234TNF81	21	22	1 438




Single row ball slewing bearings with internal gear, type VI.10

Single row ball slewing bearings, without gear, VU.10 type Non-standardized

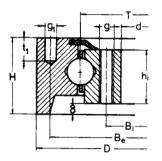


Fig.1

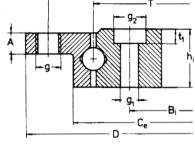


Fig.2

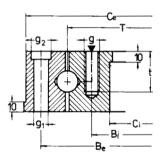


Fig.3

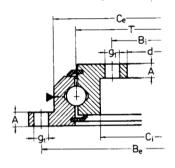


Fig.4

Dimen	sions													
T	đ	D	Н	B_{i}	C _e	C_{i}	hį	B _e	h _e	Α	g	g 1	92	t
mm														
380	324	444	54	344			38	424	54		M10			14
387	300	475	50	340	420		50	450	48	20	M14	11	18	
407	315	500	60	345	498	317		470			M12	14	20	35
414	304	518	56	332	453	375	45,5	490	45,5	12		18		
544	434 505	648 648	56 56	462	583 583	505 505	46 46	620 620	46 46	12 12		18 18		
570	470	670	62	520		488	50	630	50			9	15	
641	534	748	56	562	687	595	46	720	46	12		18		
741	634	848	56	662	787	695	46	820	46	12		18		
782	680	880	90	715							M16			15
844	734	948	56	762	883	805	45,5	920	45,5	12		18		
870	650	1 170	104	730	960	770	104	1110	73		M20	22		

grease nipple
1) non equidistant holes

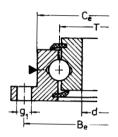


Fig.5

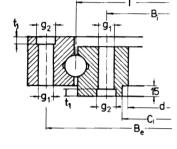
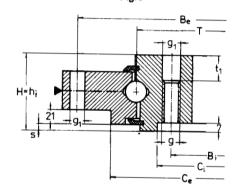
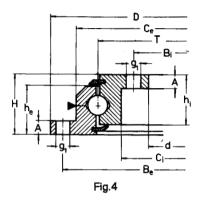
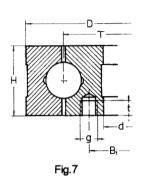


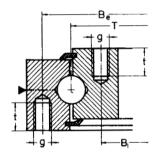
Fig.6

Fig.7




Fig.8


			Grease	nipples	Designation	Fig.	Dia- gram	Weight	Pro- ducer
ti	n _i	ne	no.	type			posi- tion		uucei
			pcs.	_				kg	_
	5 ¹⁾	2			VU.10.0380	1	2	19,2	
11	12	12			VU.10.0387V	2	2	29,7	4
14	16	16	4	A2	VU.10.0407TN	3	3	50,7	4
	12	8	4	A2	VU.10.0414V	4	4	24,7	4
	14	10 10	4 4	A2 A2	VU.10.0544V VU.10.0544AV	4 5	5 5	35,5 31,0	4
10	10	10			VU.10.0570FP4	6	6	66,0	4
	16	12	4	A 2	VU.10.0641V	4	7	40,0	4
	16	12	4	A2	VU.10.0741V	4	8	46,5	4
	6				VU.10.0782V	7	9	164	4
	18	14	4	A 2	VU.10.0844V	4	10	50,5	4
45	12	12	4	А3	VU.10.0870TN	8	11	404	4


 $\begin{array}{l} n_i = \text{number of holes in inner ring} \\ n_e = \text{number of holes in outer ring} \end{array}$

Single row ball slewing bearings, without gear, VU.10 type

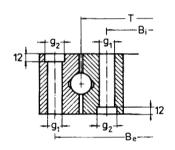


Fig.9

Fig.10

Dimens	sions										
Т	d	D	Н	Bi	Ce	Ci	hį	Be	he	Α	g
mm											
875	740	1 000	124	780			114	960	114		M24
890	800	980	57	830				950		21	
942	834	1 048	56	862	988	896	46	1 020	46	12	
952,5	805	1 100	90	845	1 017	893	71	1 060	71	21	
1 048	950	1 150	80	995							M16
1 093	985	1 200	56	1 015	1 134	1 052	46	1 170	46	15	
1 235	1 093	1 377	140	1 135	1 375	1 095	120	1 335	120		M20
1 355	1 205	1 500	90	1 245	1 417	1 293	71	1 460	71	21	M12
2 920	2 690	3 155	250	2 750		3 018	235	3 085	185		

grease nipple
1) non equidistant holes

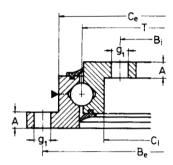


Fig.11

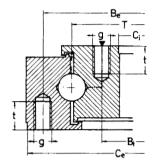


Fig.12

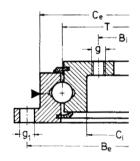
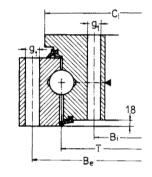
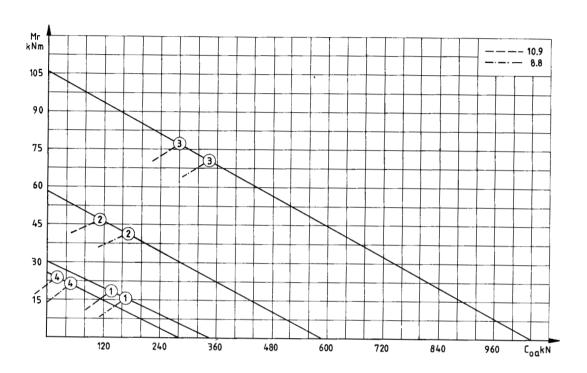
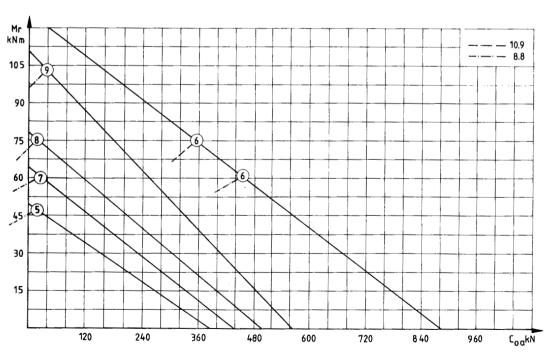


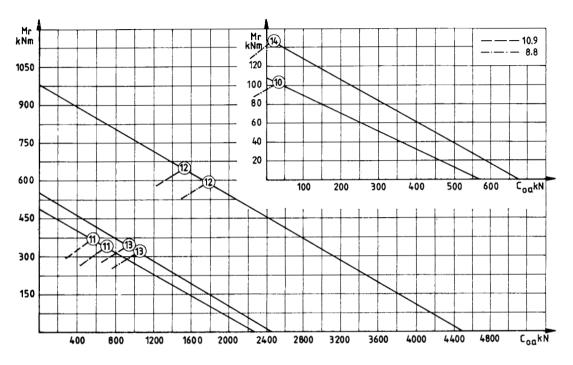
Fig.13

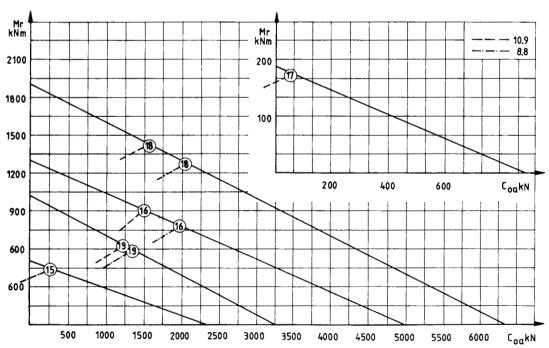


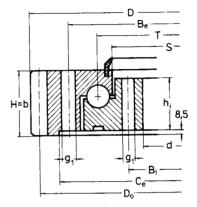

Fig.14


					Greas	e nipples	Designation	Fig.	Dia-	Weight	
91	92	t	n _i	п _е	no.	type			gram posi- tion		ducer
					pcs.					kg	
		45	12	12	4	A3	VU.10.0875V	9	12	291	4
11	18		10	20			VU.10.0890ATNP4	10	13	101	4
18			20	16	4	A2	VU.10.0942V	4	14	59,0	4
22			30	30	4	A2	VU.10.0952V	4	f5	133	4
		15	6				VU.10.1048V	7	16	202	4
18			32 ¹⁾ -	32 ¹⁾	4	A1+A2	VU.10.1093AV	11	17	71,5	4
		50	42	42	6	A 3	VU.10.1235F	12	18	367	4
18			18	12	6	A2	VU.10.1355V	13	19	214	4
39			52	52	9	A3	VU.10.2920	14	20	3 415	

 $[\]begin{array}{l} n_i = number \ of \ holes \ in \ inner \ ring \\ n_e = number \ of \ holes \ in \ outer \ ring \end{array}$




Single row ball slewing bearings, without gear, VU.10 type



Single row ball slewing bearings

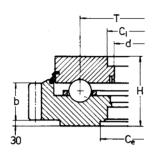


Fig.1

Fig.2

12¹⁾

18¹⁾

12¹⁾

36

26

18

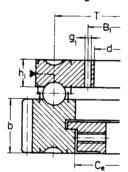


Fig.3

- with external gear, VE.10 type

Dimen	sions														
Т	d	D	Н	B _i	s	C _e	C_{i}	hį	$B_{\boldsymbol{e}}$	he	g	91	g 2	t	t ₁
mm															
1 338	1 225	1 542	65	1 265	1 306	1 456		46	1 415			18		24	24
3 700	3 370	4 200	340			3 510	3 445			225					
5 000	4 730	5 218	310	4 770		4 360	-	90				22		60	
- witho	out gear,	VU.10 ty	/pe												
Dimen	sions														
Т	đ	D	Н	B_i	s	C _e	\mathbf{c}_{i}	hį	Вe	h _e	g	9 1	t	\mathbf{n}_{i}	n _e
mm															
1 500	1 380	1 620	120	1 420		1 400	1 600	72	1 580	72	M16		25	24	24

2 170

1 880

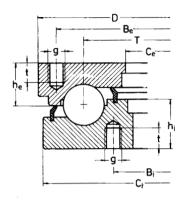
2 200

240

65

1 950

2 060


1 600

2 115

^{2 030}

grease nipple
1) non equidistant holes

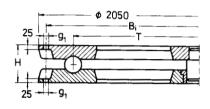


Fig.4

Fig.5

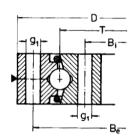


Fig.6

					Greas	e nipples	Designation	Axial load	Weight	Fig.
D ₀	m	Z	b	x m	no.	type		stat. C _{0a}		
	-				pcs.			kN	kg	_
1 530	6	255	65				VE.10.1338VF81	400	302	1
4 140	30	138	180				VE.10.3700	1 000	8794	2
5 192	22	236	180	-9	12	A 3	VE.10.5000	1 090	7200	3

					Greas	e nipples	Designation	Axial load	Weight	Fig.	Dia- gram
D ₀	m	Z	b	x m	no.	type		stat. C _{0a}			posi- tion
					pcs.	_		kN	kg		
							VU.10.1500TN	2 100	475	4	21
							M-VU.10.1600V		264	5	
					2	A3	VU.10.2115F		261	6	22

 $\begin{array}{l} n_i = number \ of \ holes \ in \ inner \ ring \\ n_e = number \ of \ holes \ in \ outer \ ring \end{array}$

Ball slewing bearings

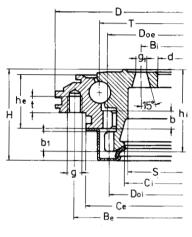


Fig.1

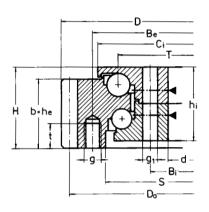
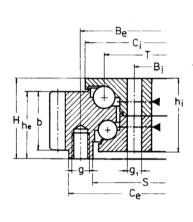


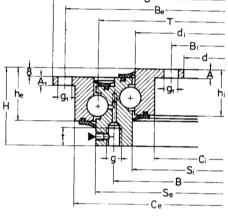
Fig.2

- single row, with internal and external gear, VIE.10 type

Dimen	sions													
T	d	D	Н	B_i	S	Ce	Ci	hi	Be	he	g	g1	t	
mm														
2 127,4	1 924	2 275	165	1 978	2 048	2 158	2 066	150	2 208	94	M24	34	27	

- double row, with external gear, VE.20 type


Dimens	sions														
т	d	D	н	$\mathbf{B}_{\mathbf{i}}$	Ś	Ce	Ci	hi	Be	h _e	g	9 1	t	nį	
mm				-											
1 735	1 625	1 906	128	1 665	1 765	-	1 785	118	1 805	99	M24	26	45	44	
1 790	1 695	1 965	107	1 730	1 820	1 890	1 840	94	1 850	85	M20	22	45	44	


- double row, without gear, VU.20 type

Dimer	nsio ns														
Т	d	D	Н	B_{i}	Ci	Ce	hį	Be	В	s _i	Se	h _e	A	A ₁	
mm															
884	700	1 000	86	730	768	932	47	970	850	812	888	47	8	9	

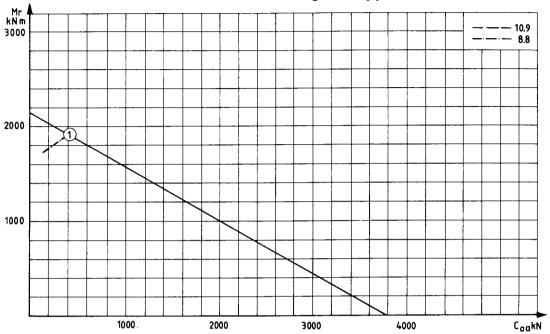
[►] grease nipple 1) non equidistant holes

- D -

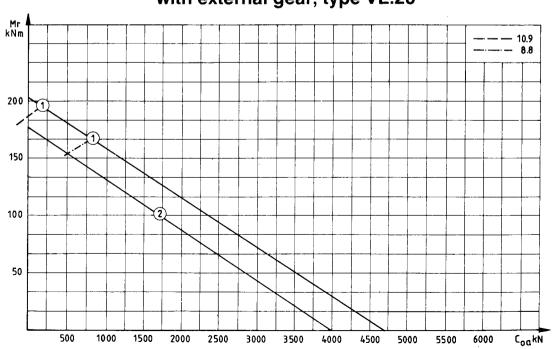
Fig. 3

Fig. 4

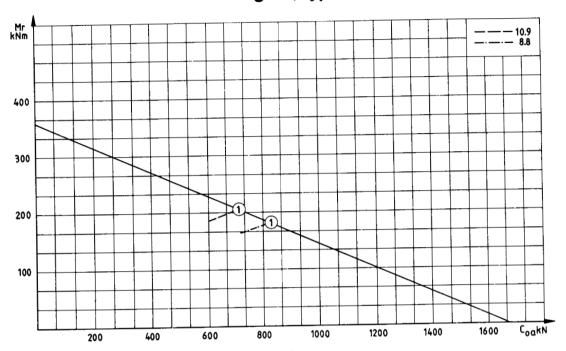
nį	п _е	D _{Oi}	D _{0e}	m _{i,e}	Z _{i,e}	b	b ₁	x _{i,e} m	Designation	Fig.	Dia- grar pos tion	n i-	
												kg	
44 ¹⁾	46 ¹⁾		2 100	5	420	38	45	+5	VIE.10.2128F	1	1	450	


n _e	D ₀	m	Z	b	x m	Greas	se nipples type	Designation	Fig.	Dia- grai pos tion	m Č
						pcs.	_				kg
44	1 872	12	156	99	+5	8+8	A3	VE.20.1735F	2	1	596
44	1 935	15	129	80	-	3+3	A3	VE.20.1790F	3	2	440

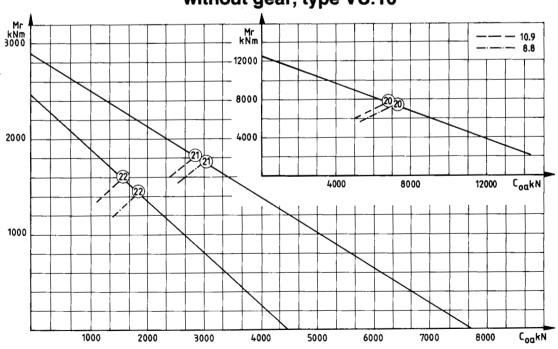
				•		Great	se nipples	Designation	Fig.	Dia	
g	g 1	t	nį	n ₀	$n_{\mathbf{e}}$	no.	type			gra pos tion	ii-
						pcs.	_				kg
M16	16,5	22	8 ¹⁾	12 ¹⁾	8	6+6	(A1+U2)+A2	VU.20.0884AV	4	1	99


 $\begin{array}{l} n_i = number \ of \ holes \ in \ inner \ ring \\ n_0 = number \ of \ holes \ in \ intermediate \ ring \\ n_e = number \ of \ holes \ in \ outer \ ring \end{array}$

Single row ball slewing bearings with internal and external gear, type VIE.10



Double row ball slewing bearings with external gear, type VE.20



Double row ball slewing bearings without gear, type VU.20

Single row ball slewing bearins without gear, type VU.10

Crossed cylindrical roller slewing bearings with internal gear, XE.10 type

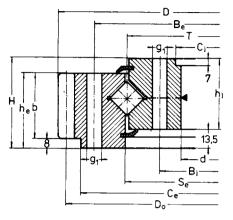


Fig.1

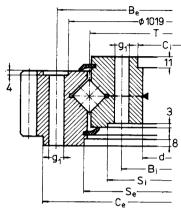


Fig.2

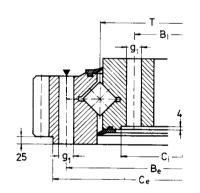


Fig.3

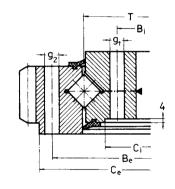


Fig.4

Dimen	sions													
T	d	D	Н	B_{i}	Se	Ce	Si	$C_{\rm i}$	\mathbf{h}_{i}	Be	h _e	91	g 2	t
mm	J						· · · · · ·					· · · · · · · · · · · · · · · · · · ·		
675	570	822	93	605	678	782		575	79,5	754	79,5	22		··
980	868 868	1 144 1 144	100 100	910 910	993 993	1 090 1 088	943	870 870	80 88	1 050 1 050	79 81	22 22		
1 418	1 270	1 620	134	1 330	1 570			1 375	118	1 510	117	33	26	
1 782	1 580 1 580	2 040 2 040	142 142	1 650 1 650	1 782 1 782	1 470 1 470		1 585 1 585	126 126	1 910 1 910	120 120	39 39		
2 236	2 042	2 492	164	2 112	2 260	2 420		2 049	142	2 360	148	34	M30	59

prease nipple
type greasing by pipe
non equidistant holes

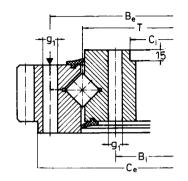


Fig.5

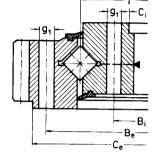
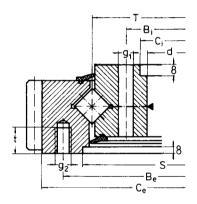
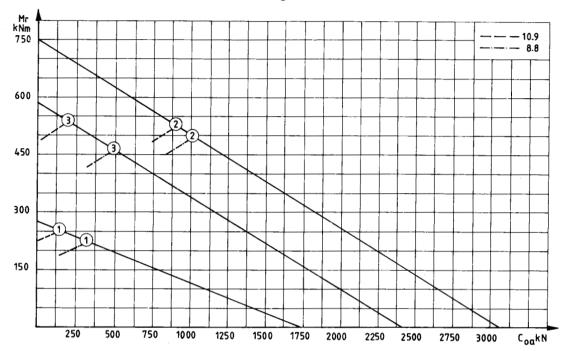
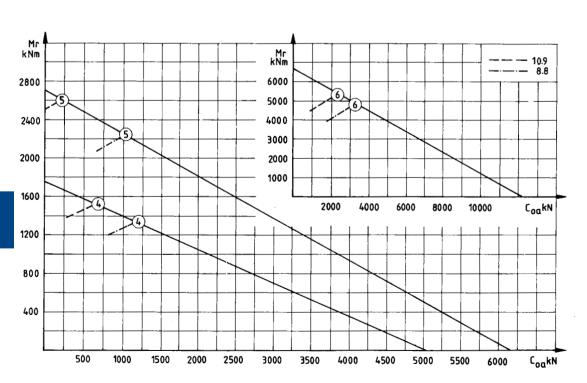


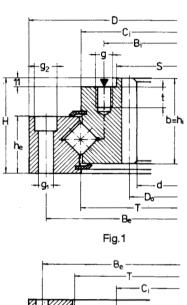
Fig.6




Fig.7


							Greas	e nipples	Designation	Fig.	Dia-	Weight
n _i	n _e	D ₀	m	Z	b	x m	no.	type			gram posi- tion	
							pcs.					kg
18	18	810	6	135	71,5		4	A2	XE.10.0675F	1	1	147
24 ¹⁾ 26 ¹⁾	18 ₁₎	1 136 1 122	8 11	142 102	66 68	-4	3 4+4	*) A2+A3	XE.10.0980V XE.10.0980ATNF81	2	2 3	226 232
23	36	1 600	10	160	85		3	*)	XE.10.1418V	4	4	537
24 24	24 24	2 016 2 016	12 12	168 168	110 110		6 6	A1+U3 A3	XE.10.1782FF81 XE.10.1782AFF81	5 6	5 5	1 060 1 060
45	45	2 464	14	176	147		4	A3	XE.10.2236V	7	6	1 668

 $\begin{array}{l} ni &= number \ of \ holes \ in \ inner \ ring \\ n_e &= number \ of \ holes \ in \ outer \ ring \end{array}$


Crossed cylindrical roller slewing bearings with external gear, XE.10 type

Crossed cylindrical roller slewing bearings with internal gear, XI.10 type

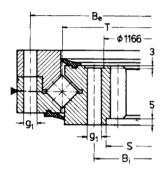


Fig.2

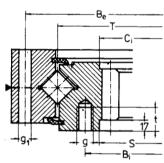
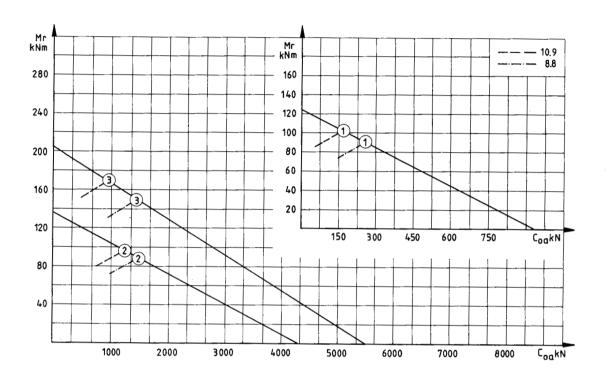
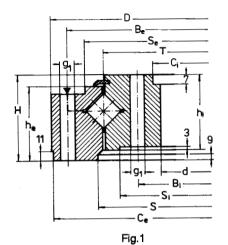



Fig.3

Dimen	sions													
T	d	D	Н	B_{i}	s	C_{i}	hį	$B_{\boldsymbol{e}}$	h _e	g	g 1	92	t	n_i
mm														
543	441,5	632	102	508	477	543	92	602	46	M12	18	26	25	20
1 277	1 088	1 400	95	1 195	1 165		80	1 360	80		22			24
1 465	1 308	1 600	120	1 404	1 360	1 392	110	1 550	110	25,4	27		30	36

[►] grease nipple *) greasing by pipe



						Greas	e nipples	Designation	Fig.	Dia-	Weight
n _e	D_0	m	Z	b	x m	no.	type			gram posi- tion	
						pcs.	_				kg
12	450	4,5	100	92	+0,37	4	*)	XI.10.0543TNP4	1	1	73,4
24	1 104	12	92	75		8	A1	XI.10.1277V	2	2	357
36	1 320	12	110	88	-6	4	A3	XI.10.1465TN	3	3	505

 $\begin{array}{l} n_i \ = \ number \ of \ holes \ in \ inner \ ring \\ n_e \ = \ number \ of \ holes \ in \ outer \ ring \end{array}$

Crossed cylindrical roller slewing bearings without gear, XU.10 type

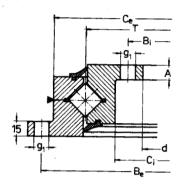


Fig.3

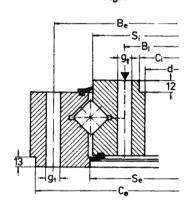
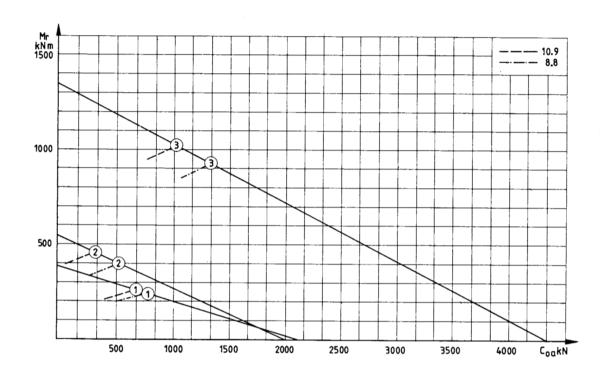


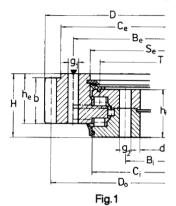
Fig.2

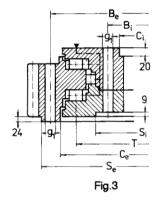

Dimen	sions											
T	d	D	Ĥ	Bi	s	Si	Se	Ce	Ci	hi	Be	he
mm												
675	570	783	91,5	605	683	645	717	782	575	79,5	754	78
1 093	985	1 200	56	1 015				1 134	1 052	46	1 170	46
1 250	1080	1 475,5	110	1 150		1 247	1 249	1 415	1 085	100	1 350	89

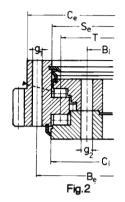
grease nipple

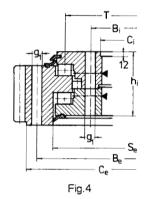
y) greasing by pipe

non equidistant holes




			Grease nipples		Designation	Fig.	Dia-	Weight	
g 1	nį	n _e	no.	type			gram posi- tion		
mm			pcs.	_				kg	
21	18	18	4	A2	XU.10.0675V	1	1	120	
18	32 ¹)	32 ¹⁾	4	A1+U2	XU.10.1093V	2	2	71	
27	24	24	4	*)	XU.10.1250TN	3	3	557	


 $\begin{array}{l} n_i \ = \ number \ of \ holes \ in \ inner \ ring \\ n_e \ = \ number \ of \ holes \ in \ outer \ ring \end{array}$



Three-row cylindrical roller slewing bearings

- with external gear, type YE.30

Dimer	Dimensions														
T	d	D	н	B_i	Si	Se	Ce	Ci	hi	Be	he	9 1	9 2		
mm															
1 228	1 070	1 440	137	1 125		1 258	1 385	1 256	112	1 320	107	26	33		
1 320	1 115	1 584	223	1 195		1 371	1 520	1 378	179	1 455	179	33	45		
1 763,	5 1 616	1 988	138	1 670	1 706	1 913	1 812	1 618	129	1 860	104	26			
2 106	1 882	2 394	172	1 962		2 320	2 142	1 890	150	2 242	142	33			

- with internal gear, type YI.30

Dimen	Dimensions													
Т	d	D	н	$\mathbf{B}_{\mathbf{i}}$	s	C _e	Ci	hį	$B_{\mathbf{e}}$	h _e	g	9 1	t	t ₁
mm														
1 400	1 164,	46	1 547	128	1 295		1 373	1 379	102	1495	123		26	
1 563		21790 21790	218 218	1 400 1 400	1 312 1 312	1 519 1 519	1 532 1 532	170 170	1 704 1 704	205 205	M39	42 42		120
1 800	1 524	1 981	147	1 675	1 600	1 763	1 774	117	1 915	138	-	33		
2 233	1 980	2 410	183	2 140		2 195	2 206	153	2 345	138	M30	33	60	45

grease nipplegreasing by pipe

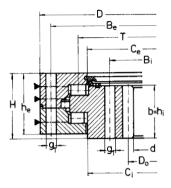


Fig.5

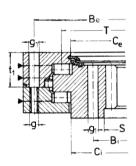


Fig.7

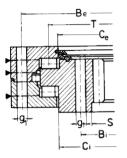


Fig.6

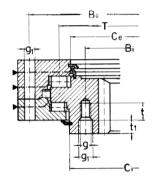
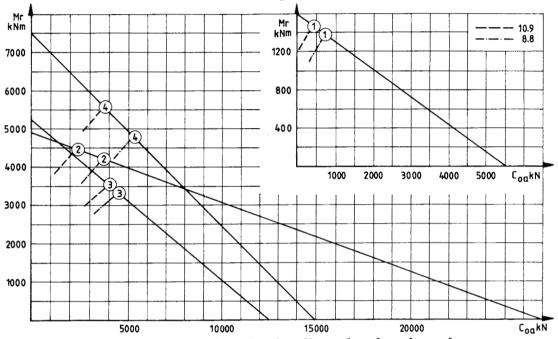
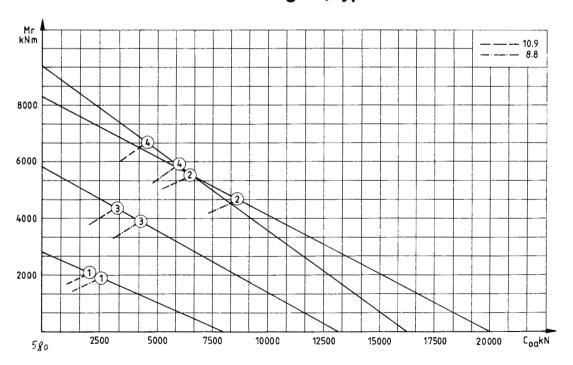


Fig.8

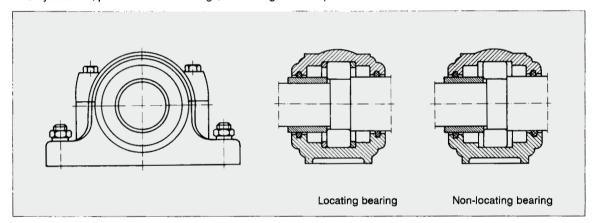

ni	n _e	D ₀	m	Z	b	Grease no.	type	Designation	Fig.	Dia- gram posi- tion	Weight
		mm	_			pcs.					kg
26	36	1 420	10	142	100	3+3+3	A3	YE.30.1228TN	1	1	532
36	56	1 560	12	130	100	3+3	A3	YE.30.1320TN	2	2	1 042
44	44	1 960	14	140	80	10+5	*)	YE.30.1765F	3	3	760
40	40	2 366	14	169	130	6+6	A3	YE.30.2100F	4	4	1 657

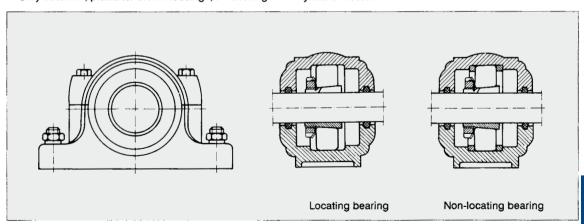
nį		Do		z			Grease nipples		Designation	Fig.	Dia-	Weight
	n _e		m		b	x m	no.	type			gram posi- tion	
		mm	_				pcs.					kg
36	36	1 176	12	98	102	-6	3+3+3	АЗ	Yl.30.1400FF81	5	1	631
40 40	25 25	1 260 1 260	12 12	105 105	145 145	-9,6 -9,6	2+2+2 2+2+2		YI.30.1563ATNF81 YI.30,1563TNF81	6 7	2	1 610 1 617
36	36	1 536	12	128	108	-6	6+6+6	А3	YI.30.1800F	7	3	1 124
48	48	1 980	18	110	150	-18	6+6+6	A3	YI.30.2233FF81	8	4	1 433


 $\begin{array}{l} n_i = \text{number of holes in inner ring} \\ n_e = \text{number of holes in outer ring} \end{array}$

Three-row cylindrical roller slewing bearings with external gear, type YE.30

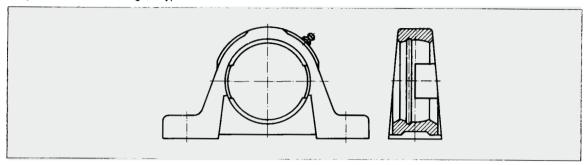
Three-row cylindrical roller slewing bearings with internal gear, type YI.30



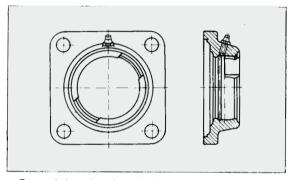

Bearing housing units

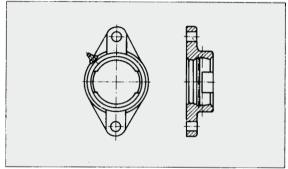
Bearing housings produced by us are intended to bearing fitting in assemblies used for various machines, equipments and apparata. These housings are generally machined of grey cast iron or pressed sheet. The bearing housing designs include: two or one- piece housing, plummer block housings, flanged housings, as shown below:

Grey cast iron, plummer block housings, for bearings with adapter sleeve:

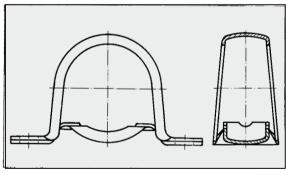


Grey cast iron, plummer block housings, for bearings with cylindrical bore:

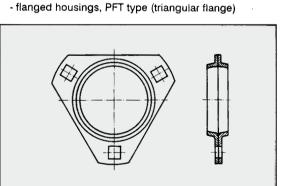


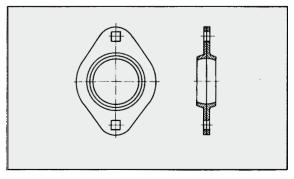

Grey cast iron housings, unsplit, for bearings with spherical outside surface and extended inner ring: - plummer block housings, S type

- flanged housings, F type



- flanged housings, OF type




Pressed sheet housings for bearings with spherical outside surface and extended inner ring: - flanged housings, PFR type (circular flange)

- plummer block housings, PT type

- flanged housings, PFO type (oval flange)

Design

Two or one-piece bearing housings are generally casted of grey cast iron (Fc 200), according to national standard

The seating in the housing is used for bearing mounting it can be manufactured for locating bearings, when the bearing is axially located by one or two rings, according to the specifications in the bearing housing tables. It can also be manufactured for non-locating bearings.

The housings are sealed by oil impregnated felt seals, according to the specifications in chapter "Sealing of rolling bearings" on page 83.

At request, they can also be manufactured with other types of seals, depending on the lubricant, e.g. labyrinth seal, rubbing seal with a spring incorporated, V-ring seal etc.

Grease lubrication of bearing housings

In most cases, bearings housings are grease lubricated. For this reason, they are provided with threaded holes for grease nipple.

When mounting the grease nipples, it should be considered if the bearings are mounted with adapter sleeves; in this case, the adapter sleeves should be opposite to the lock nuts. In case of spherical roller bearings with lubrication groove and holes in the outer ring (W33), they should be placed in central position, face to face with the lubrication groove.

The grease quantity which is to be introduced in the housing initially and when bearings should be lubricated is given in table 1, depending on the bearing operating conditions and the free space in the housing. If the operating speed is $n/n_{ef} < 0.8$, the operating temperature $< 100^{\circ}\text{C}$ and the load value P/C < 0.3, the free space in the housing will be 60% filled. If the operating speed is $n/n_{ef} < 0.2$, the free space in the housing can be completely filled with grease. The most usual grease used for bearing lubrication is lithium soap based grease UM 185 Li2 (see chapter 8).

Grease quantity

Table 1

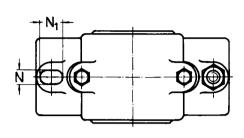
Housing designation Tapered bore	Cylindrical bore	Quantity initial	re-lub cation
		9	
CT - 505	CT - 205	30	5
CT - 506; CT - 605	CT - 206	40	5
CT - 507; CT - 606	CT - 207	50	8
CT - 508; CT - 607	CT - 208	60	8
CT - 509 -	CT - 209	65	8
CT - 510; CT - 608	CT - 210	75	10
CT - 511; CT - 609	CT - 211	100	10
CT - 512; CT - 610	CT - 212	150	12
CT - 513; CT - 611	CT - 213	180	15
CT - 515; CT - 612	CT - 215	230	15
CT - 516; CT - 613	CT - 216	280	20
CT - 517 -	CT - 217	330	20
CT - 518; CT - 615	CT - 218	430	25
CT - 519; CT - 616	CT - 219	480	30
CT - 520; CT - 617	CT - 220	630	40
CT - 522; CT - 619	CT - 222	850	50

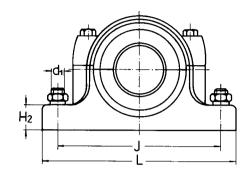
Dimensions, tolerances

The dimensions of bearing housings, both in case of casted or pressed housings, are in accordance with ISO 113/II;3228 and national standards, so that housings are interchangeable.

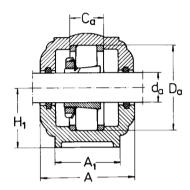
The tolerances are also in accordance with international norms and correspond for the bearing seating, considering the specifications in chapter "Bearing application" on page 74. The seating for bearing is generally manufactured to the tolerance class H7. In case of housings, it can be also manufactured to other tolerance classes.

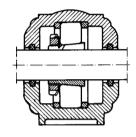
The dimensions of these bearing housings, of axial location rings and also the bearing designations for which each bearing housing corresponds are given in tables.


Casted housings for bearings with spherical outside surface and extended inner ring

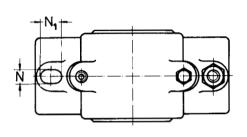

These housings are used for simple mounting designs, in case of unpretentious assemblies such as agricultural machines. The housings for agricultural machines are generally fixed housings. Bearings mounted in these housings are deep groove ball bearings, single row, with spherical outside surface and extended inner ring. Due to their spherical outside surface, they allow misalignments up to 5°.

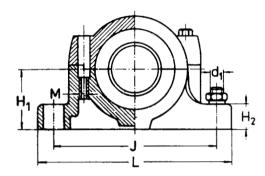
The bearings are sealed on both ends and are greased, but they are also provided with relubrication holes. For this reason, the housings are also provided with a threaded hole M8×1 for mounting of the grease nipple.


Grey cast iron, plummer block housings, split, for bearings with tapered bore and adapter sleeve

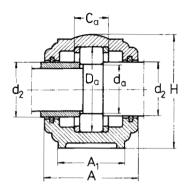


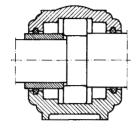
Desig-	Dime	ensions	В										Loca	ting ring	Bearing type
nation	da	Da	L	A ₁	H ₂	Ca	H ₁	Α	J	d ₁	N	N ₁	pcs.	outer dia. × width	
_	mm												_	mm × mm	
CT505	20	52	165	46	19	25	40	67	130	M10	11	20	2 1	52×5 52×7	1205K 2205K;22205K
CT506	25	62	185	52	22	32	50	77	150	M10	11	22	2	62×8 62×6	1206K 2206K;22206K
CT507	30	72	185	52	22	34	50	82	150	M10	11	20	2	72×8,5 72×5,5	1207K 2207K;22207K
CT508	35	80	205	60	25	39	60	85	170	M12	14	20	2	80×10,5 80×8	1208K 2208K;22208k
CT509	40	85	205	60	25	30	60	85	170	M12	14	20	2 1	85×5,5 85×7	1209K 2209K;22209K
CT510	45	90	205	60	25	41	60	90	170	M12	14	20	2 2	90×10,5 90×9	1210K 2210K;22210K
CT511	50	100	255	70	28	44	70	95	210	M16	18	23	2	100×11,5 100×9,5	1211K 2211K;22211K
CT512	55	110	255	70	30	48	70	105	210	M16	18	23	2 2	110×13 110×10	1212K 2212K;22212K
CT513	60	120	275	80	30	51	80	110	230	`M16	18	24	2 2	120×14 120×10	1213K 2213K;22213K
CT515	65	130	280	80	30	56	80	115	230	M16	18	26	2 2	130×15,5 130×12,5	1215K 2215K;22215K
CT516	70	140	315	90	32	58	95	120	26 0	M20	22	30	2 2	140×16 140×12,5	1216K 2216K;22216K
CT517	75	150	320	90	32	61	95	125	260	M20	22	30	2 2	150×16,5 150×12,5	1217K 2217K;22217K
CT518	80	160	345	100	35	65	100	140	290	M20	22	30	1 2 2	160×12,5 160×17,5 160×12,5	23218K 1218K 2218K;22218K
CT519	85	170	345	100	35	68	112	145	290	M20	22	30	2 2	170×18 170×12,5	1219K 2219K;22219K
CT520	90	180	380	110	40	70	112	160	320	M24	26	32	1 2 2	180×9,7 180×18 180×12	23220K 1220K 2220K;22220K
CT522	100	200	410	120	45	80	125	175	350	M24	26	32	1 2 2	200×10,2 200×21 200×18,5	23222K 1222K 2222K;22222K



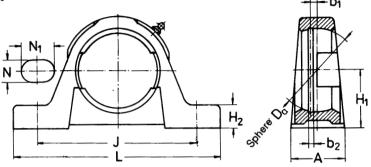


H ₁ A	J	\mathbf{d}_1	N	Ni	pcs.	outer dia.	
						× width	
					_	mm × mm	_
50 77	150	M10	11	20	2	62×7,5 62×10	1305K 2305K
50 82	150	M10	11	20	2 1	72×7,5 72×7	1306K 2306K
60 85	170	M12	14	20	2	80×9 80×8	1307K 2307K
60 90	170	M12	14	20	2	90×9 90×8	1308K;21308K 2308K;22308K
70 95	210	M16	18	23	2	100×9,5 100×8	1309K,21309K 2309K;22309K
70 105	210	M16	18	23	2	110×10,5 110×8	1310K;21310K 2310K;22310K
80 110	230	M 16	18	24	2	120×11 120×8	1311K;21311K 2311K;22311K
80 115	230	M16	18	26	2	130×12,5 130×10	1312K;21312K 2312K;22312K
95 120	260	M20	22	29	2 1	140×12,5 140×10	1313K;21313K 2313K;22313K
100 140	290	M20	22	29	2	160×14 160×10	1315K;2315K 2315K;22315K
112 145	290	M20	22	29	2 1	170×14,5 170×10	1316K;2316K 2316K;22316K
112 160	320	M24	26	32	2	180×14,5 180×10	1317K;21317K 2317K;22317K
125 175	350	M24	26	32	2 1	200×15,8 200×13	1319K 2319K;22319K
140 185	350	M24	26	32	2	215×17,8 215×13	1320K 2320K;22320K
150 190	390	M24	28	38	2	240×19,8 240×9,5	1322K 2322K;22322K
						1 150 190 390 M24 28 38 2	1 215×13 150 190 390 M24 28 38 2 240×19,8
5 6 6 7 7 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 82 0 85 0 90 0 95 0 105 0 110 0 115 5 120 00 140 12 145 12 160 25 175 40 185	0 82 150 0 85 170 0 90 170 0 95 210 0 105 210 0 110 230 0 115 230 115 230 110 260 110 290 12 145 290 12 160 320 25 175 350 40 185 350	0 82 150 M10 0 85 170 M12 0 90 170 M12 0 95 210 M16 0 105 210 M16 0 110 230 M16 0 115 230 M16 5 120 260 M20 12 145 290 M20 12 145 290 M20 12 160 320 M24 25 175 350 M24 40 185 350 M24	0 82 150 M10 11 0 85 170 M12 14 0 90 170 M12 14 0 95 210 M16 18 0 105 210 M16 18 0 110 230 M16 18 0 115 230 M16 18 5 120 260 M20 22 12 145 290 M20 22 12 145 290 M20 22 12 160 320 M24 26 25 175 350 M24 26 40 185 350 M24 26	0 82 150 M10 11 20 0 85 170 M12 14 20 0 90 170 M12 14 20 0 95 210 M16 18 23 0 105 210 M16 18 23 0 110 230 M16 18 24 0 115 230 M16 18 26 5 120 260 M20 22 29 12 145 290 M20 22 29 12 160 320 M24 26 32 25 175 350 M24 26 32 40 185 350 M24 26 32	1 0 82 150 M10 11 20 2 1 1 0 85 170 M12 14 20 2 1 1 0 90 170 M12 14 20 2 1 1 0 95 210 M16 18 23 2 1 0 105 210 M16 18 23 2 1 0 110 230 M16 18 24 2 1 1 0 115 230 M16 18 26 2 1 1 5 120 260 M20 22 29 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 62×10 0 82 150 M10 11 20 2 72×7,5 1 72×7 0 85 170 M12 14 20 2 80×9 1 80×8 0 90 170 M12 14 20 2 90×9 1 90×8 0 95 210 M16 18 23 2 100×9,5 1 100×8 0 105 210 M16 18 23 2 110×10,5 1 110×8 0 110 230 M16 18 24 2 120×11 1 20×8 0 115 230 M16 18 26 2 130×12,5 1 30×10 5 120 260 M20 22 29 2 140×12,5 1 40×10 12 145 290 M20 22 29 2 160×14 160×10 12 145 290 M20 22 29 2 170×14,5 1 70×10 12 160 320 M24 26 32 2 200×15,8 1 200×13 40 185 350 M24 26 32 2 215×17,8 1 215×13 50 190 390 M24 28 38 2 240×19,8


Grey cast iron, plummer block housings, split, for bearings with cylindrical bore

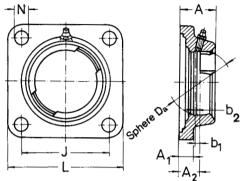


Desig- nation		n ensi Da		n	L	Α	Δ.	Ηı	H2	н	C-	J	d ₁	N	N ₁	Loca	iting ring	Bearing type
	чa	Da	uz		L	^	A ₁	П1	- N2	max	C _a	J	uı	14	141	pcs.	outer dia. × width	
-	mm	1														_	mm × mm	
CT204	20	47	28	М8	155	67	45	35	19	75	25	113	M10	12	15	2	47×5,5 47×7	1204 2204
CT304	20	52	25	M10	165	67	46	40	22	75	29	130	M12	15	20	2 1	52×7 52×8	1304 2304
CT205	25	52	30	M10	165	67	46	40	22	75	25	130	M12	15	20	2 1	52×5 52×7	1205 2205; 22205
CT305	25	62	30	M 10	185	80	52	50	22	90	34	150	M12	15	20	2	62×8,5 62×10	1305 2305
CT206	30	62	35	M10	185	77	52	50	22	90	30	150	M12	15	20	1 2	62×10 62×7	1206 2206; 22206
CT306	30	72	35	M10	185	82	52	50	22	95	37	150	M12	15	20	2	72×9 72×10	1306 2306
CT207	35	72	45	M10	185	82	52	50	22	95	33	150	M12	15	20	2	72×8 72×10	1207 2207; 22207
CT307	35	80	45	M10	205	90	60	60	25	110	41	170	M12	15	20	2 1	80×10 80×10	1307 2307
CT208	40	80	50	M10	205	85	60	60	25	110	33	170	M12	15	20	2 1	80×7,5 80×10	1208 2208; 22208
CT308	40	90	50	M10	205	95	60	60	25	115	43	170	M12	15	20	2	90×10 90×10	1308 2308; 22308
CT209	45	85	55	M10	205	85	60	60	25	112	31	170	M12	15	20	2 1	85×6 85×8	1209 2209
CT309	45	100	55	M14	255	105	70	70	28	130	46	210	M16	18	23	2	100×10,5 100×10	1309 2309; 22309
CT210	50	90	60	M10	205	90	60	60	25	112	33	170	M12	15	20	2 1	90×6,5 90×10	1210 2210; 22210
CT310	50	110	60	M14	255	115	70	70	30	135	50	210	M16	18	23	2 1	110×11,5 110×10	1310 2310; 22310
CT211	55	100	65	M14	255	95	70	70	28	130	33	210	M16	18	23	2	100×6 100×6	1211 2211; 22211
CT311	55	120	65	M14	275	120	80	80	30	150	53	230	M16	18	23	2	120×12 120×10	1311; 21311 2311; 22311
CT212	60	110	70	M14	255	105	70	70	30	135	38	210	M16	18	23	2 1	110×8 110×10	1212 2212; 22212
CT312	60	130	70	M14	280	125	80	80	30	155	56	230	M16	18	23	2 1	130×12,5 130×10	1312; 21312 2312; 22313

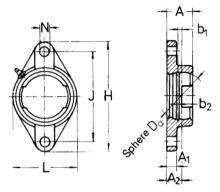

Locating bearing

Non-locating bearing

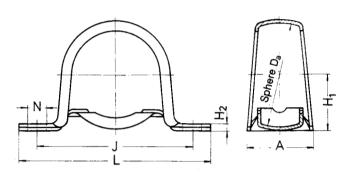
Desig-		ensi			L	Α	Αı	ш.	u.	н	_	J	al.	N	NI.	Loca	iting ring	Bearing type
nation	da	υa	a ₂	U	L	Α	A1	H ₁	Hρ	max	Ca	J	d ₁	N	N ₁	pcs.	outer dia. × width	
-	mm	1														_	mm × mm	_
CT213	65	120	75	M14	275	110	80	80	30	150	43	230	M16	18	23	2 1	120×10 120×12	1213 2213; 22213
CT313	65	140	75	M18	315	130	90	95	32	175	58	260	M20	22	27	2	140×12,5 140×10	1313; 21313 2313; 22313
CT214	70	125	80	M14	275	115	80	80	30	155	44	230	M 16	18	23	2 1	125×10 125×13	1214 2214; 22214
CT314	70	150	80	M18	320	130	90	95	32	185	61	260	M20	22	27	2 1	150×13 150×10	1314; 21314 2134; 22314
CT215	75	130	85	M14	280	115	80	80	30	155	41	230	M16	18	23	2 1	130×8 130×10	1215 2215; 22215
CT315	75	160	8 5	M18	345	140	100	100	35	195	65	290	M20	22	27	2 1	160×14 160×10	1315; 21315 2315; 22315
CT216	80	140	90	M18	315	120	90	95	32	185	43	260	M20	22	27	2	140×8,5 140×10	1216 2216; 22216
CT316	80	170	90	M18	345	145	100	112	35	212	68	290	M20	22	27	2	170×14,5 170×10	1316; 21316 2316; 22316
CT217	85	150	95	M18	320	125	90	95	32	185	46	260	M20	22	27	2	150×9 150×10	1217 2217; 22217
CT317	85	180	95	M22	380	155	110	112	40	218	70	320	M24	26	32	2	180×14,5 180×10	1317; 21317 2317; 22317
CT218	90	160	100	M18	345	145	100	100	35	195	62,4	290	M20	32	27	2 2 2	160×16,2 160×11,2 160×10	1218 2218; 22218 23218;
CT318	90	190	100	M22	380	160	110	112	40	230	74	320	M24	26	32	2	190×15,5 190×10	1318 2318; 22318
CT220	100	180	115	M22	380	160	110	112	40	218	70,3	320	M24	26	32	2 2 1	180×18,1 180×12,1 180×10	1220 2220; 22220 23220
CT320	100	215	115	M22	410	175	120	140	45	280	83	3 აე	M24	26	32	2	215×18 215×10	1320 2320; 22320


Grey cast iron, plummer block housings, unsplit, for bearings with spherical outside surface and extended inner ring

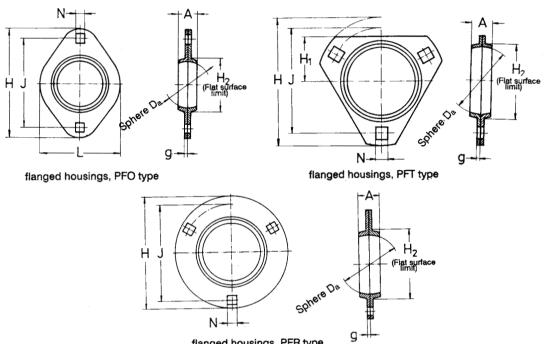
Desig- nation	Dimen: Da H18	sions L max.	A max.	J	H ₂ max.	H ₁	N H13	N ₁ H13	b ₁	b ₂	Fas- tening screw	Bearing
	mm											
S40	40	128	39	96	16	30,2	11,5	16	3,4	2	M10	UC 203
S47	47	128	39	96	16	33,3	11,5	16	3,7	2	M10	UC 204
S52	52	140	39	105	17	36,5	11,5	16	3,9	2,5	M10	UC 205
S62	62	166	48	121	19	42,9	14	19	5,0	2,5	M12	UC 206
S72	72	167	48	126	20	47,6	14	19	5,7	3	M12	UC 207
S80	80	185	55	136	20	49,2	14	19	6,2	3	M12	UC 208
S85	85	191	55	146	22	54	14	19	6,4	3	M12	UC 209
S90	90	207	61	159	23	57,2	18	20,5	6,5	3,5	M16	UC 210
S100	100	220	61	172	25	63,5	18	20,5	7,0	3,5	M16	UC 211
S110	110	242	71	186	27	69,9	18	22	7,6	4	M16	UC 212


Grey cast iron, flanged housings, for bearings with spherical outside surface and extended inner ring

					L		1	-+A ₂ +	-		
Desig- nation	Dimens Da H18	sions L max.	A max.	J	A ₁ max.	A ₂	N H13	b ₁	b ₂	Fas- tening screw	Bearing
	mm										
40	40	77	28	54	13	17	11,5	3,4	2	M10	UC 203
47	47	86	34	63,5	15	19	11,5	3,7	2	M10	UC 204
52	52	96	35	70	15	19	11,5	3,9	2,5	M10	UC 205
62	62	109	38	82,5	16	20	11,5	5,0	2,5	M10	UC 206
72	72	118	38	92	17	21	14	5,7	3	M12	UC 207
80	80	131	42	101,5	17	24	14	6,2	3	M12	UC 208
85	85	137	42	105	18	24	16	6,4	3	M14	UC 209
90	90	144	46	111	20	28	18	6,5	3,5	M16	UC 210
100	100	163	50	130	21	31	18	7,0	3,5	M16	UC 211
F110	110	175	55	143	21	34	18	7,6	4	M16	UC 212
	110	173	33	140	21	04	10	7,0	•	мто	00212


Grey cast iron, flanged housings, unsplit, for bearings with spherical outside surface and extended inner ring

Desig- nation	g- Dimensions n D _a H H8 max.		L max.	A max.	J	A ₁ max.	A ₂	N H13	b ₁	b ₂	Fas- tening screw	Bearing
	mm											
OF40	40	99	57	28	76,5	13	17	11,5	3,4	2	M10	UC 203
OF47	47	113	61	34	90	15	19	11,5	3,7	2	M10	UC 204
OF52	52	125	70	35	99	15	19	11,5	3,9	2,5	M 10	UC 205
OF62	62	142	83	38	116,5	16	20	11,5	5,0	2,5	M10	UC 206
OF72	72	156	96	38	130	17	21	14	5,7	3	M12	UC 207
OF80	80	172	105	42	143,5	17	24	14	6,2	3	M12	UC 208
OF85	85	180	111	42	148,5	18	24	16	6,4	3	M14	UC 209
OF90	90	190	116	46	157	20	28	18	6,5	3,5	M16	UC 210
OF100	100	217	134	50	184	21	31	18	7,0	3,5	M16	UC 211
OF110	110	235	138	55	202	21	34	18	7,6	4	M16	UC 212


Pressed sheet, plummer block housings, for bearings with spherical outside surface and extended inner ring

Desig- nation	Dimensi o D _a H18	ons L max.	A max.	J	H ₂ max.	H ₁	N H13	Fas- tening screw	Bearing	
_	mm				J.L.,				_	
PT40	40	86	26	68	3,5	22,2	9	M8	UC 203	
PT47	47	99	32	76	3,5	25,4	9	M8	UC 204	
PT52	52	108	32	86	4	28,6	11	M10	UC 205	
PT62	62	119	38	95	4	33,3	11	M10	UC 206	
PT72	72	130	41	100	5	30,7	11	M10	UC 207	
PT80	80	148	43	120	5	43,7	13,5	M12	UC 208	
PT85	85	156	45	128	6	46,8	13,5	M12	UC 209	

Pressed sheet, flanged housings, for bearings with spherical outside surface and extended inner ring

				max.		H ₁ max.	H ₂ max.	N H13	g	tening screw	
	mm		<u></u>								_
PFO40; PFT40; PFR40	40	81	59	15	63,5	29	49	6,6	2	M6	UC 203
PFO47; PFT47; PFR47	47	91	67	16	71,5	34	55	9	2	M8	UC 204
PFO52; PFT52; PFR52	52	96	71	18	76	35	60	9	2	M8	UC 205
PFO62; PFT62; PFR62	62	113	85	20	90,5	41	71	11	2,5	M 10	UC 206
PF072; PFT72; PFR72	72	123	94	21	100	45	81	11	2,5	M 10	UC 207
PFO80; PFT80; PFR80	80	148		23	119		91	13,5	3,5	M12	UC 208
PFO85; PFT85; PFR85	85	150		23	120,5		97	13,5	3,5	M12	UC 209
PFO90; PFT90; PFR90	90	156		25	127		102	13,5	4	M12	UC 210
PFO100;PFT100;PFR100	100	167		26	138		113	13,5	4	M12	UC 211

Special sleeves Non-standardized

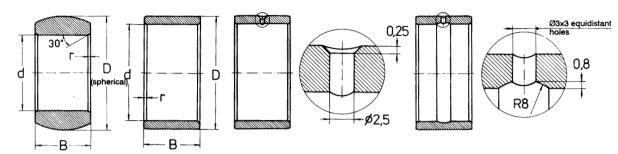


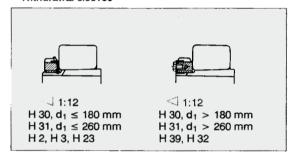
Fig.1

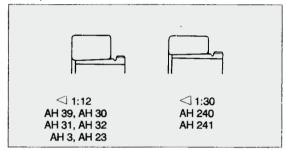
Fig.2

Fig.3

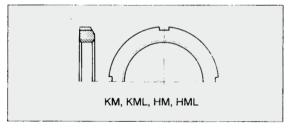
Fig.4

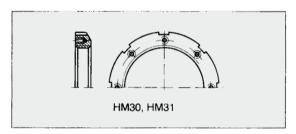
,	5					. 19.1
Dimens d	ions D	В	r	Fig.	Designation	Weight
mm				_		kg
12,5	21,77 21,87 21,94	11,8 11,8 11,8	0,3 0,3 0,3	1 1 1	BS122212/1 BS122212/2 BS122212/3	0,023 0,023 0,023
14	24,64 24,74 24,84 24,94	13,7 13,7 13,7 13,7	0,3 0,3 0,3 0,3	1 1 1	BS142514/4 BS142514/1 BS142514/2 BS142514/3	0,030 0,030 0,030 0,030
16	28,3 28,4 28,5	15,6 15,6 15,6	0,3 0,3 0,3	1 1 1	BS162816/3 BS162816/2 BS162816/1	0,046 0,046 0,046
20	29,95	12	0,5	1	BS203012	0,033
22	26	35	0,9	3	BM222635	0,040
22,05	34,15	13,4	0,3	1	BS223413	0,051
22,51	27,953	30,244	0,3	2	BM222830	0,051
25	28	20		2 '	BM252820	0,020
25 ,518	32,947	19	1	2	BT253319	0,049
29	32	38		2	BM293238	0,043
31	34	25		2	BM313425	0,030
35	40 40	19,5 50	0,5 0,5	2 2	BM354020 BM354050	0,044 0,113
44,972	56,939	43,7	0,6	2	BM455744	0,330
45	60	20	4	2	BM456020	0,197
48	52	28		2	BM485228	0,069
55	70	27	4	2	BM557027	0,312
58,5	68	45,6	1	4	BM586846	0,354
60	70 80	32,5 28	1,2 4	2	BM607033 BM608028	0,250 0,483
70	80 80	40,1 46,4	1	4	BM708040 BM708046	0,370 0,428



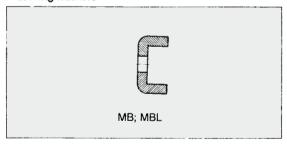

Accessories

The accessories for bearings include: adapter sleeves, withdrawal sleeves, lock nuts, locking washers and locking clamps.

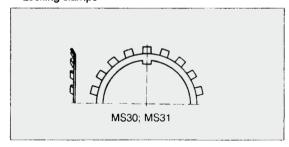

Withdrawal sleeves



Adapter sleeves

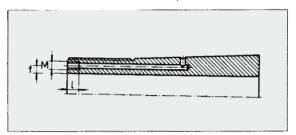


Lock nuts



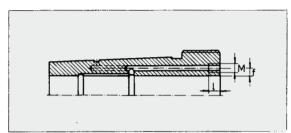
Locking washers

Locking clamps



Adapter and withdrawal sleeves

Adapter (H) and withdrawal (AH) sleeves are used when mounting tapered bore bearings on cylindrical shafts. In this case, shaft tolerances are larger than in case of bearings seated directly on the shaft. The tolerance classes recommended for shafts are h9 and h10. Form and position deviations will be in accordance with tolerance classes IT5/2 and IT7/2


Adapter sleeves are manufactured according to national standard 5814 and withdrawal sleeves according to national standard. These standards correspond to ISO

113/1

For large-sized bearings, both adapter sleeves and withdrawal sleeves are provided with lubrication grooves, so that hydraulic systems can be used when mounting and dismounting (suffix H). The dimensions of threads for the connection to the hydraulic system are given in the tables below.

Tapered bore bearing mounting with adapter or withdrawal sleeves, bearing radial clearance after mounting and axial displacement necessary to obtain proper clearance are subjects treated in the chapter "Bearing mounting and dismounting",

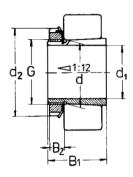
Connecting threads for adapter sleevs

Symbol		Conn	ection dir	nensio	ns Number of entries
over	up to	M	f	i	
			mm		_
H3032H	H3060H	M6	4,2	9	1
H3132H	H3160H	M6	4,2	9	1
	H3260H	M6	4,2	9	1
H2332H	H2356H	M6	4,2	9	1
H3964H	H3984H	M6	3,5	9	1
H3064H	H3084H	M6	3,5	9	1
H3164H	H3184H	M6	3,5	9	1
H3264H	H3284H	M6	3,5	9	1
H3988H	H39/500H	M8	6,5	,12	1
H3088H	H30/500H	M8	6,5	12	1
H3188H	H31/500H	M8	6,5	12	1
H3288H	H32/500H	M8	6,5	12	1
H39/530H	H39/560H	M8	6	12	1
H30/530H	H30/560H	M8	6	12	1
H39/630H		M8	6	12	1
H30/630H		M8	6	12	1

Connecting threads for withdrawal sleevs

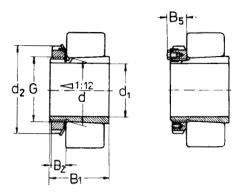
Symbol		Conn	ns Number of entries		
over	up to	М	f	į	0, 0,1,1,00
-		_	mm		_
AH3032H	AH3040H	M6	4,2	9	1
AH3132H	AH3140H	M6	4,5	9	1
AH3232H	AH3240H	M6	4,5	9	1
AH2332H	AH2340H	M6	4,5	9	1
AH2236H	AH2240H	M6	4,5	9	1
AH24044H	AH24064H	M6	8	9	2
AH24144H		M6	8	9	2

Lock nuts, locking washers and locking clamps

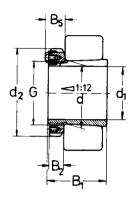

Lock nuts are used to fasten bearings and other parts on shafts. They are also used for bearing mounting on adapter

sleeves or their dismounting from withdrawal sleeves.

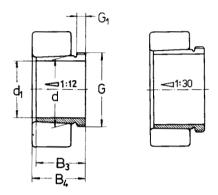
Lock nuts are manufactured according to national standard

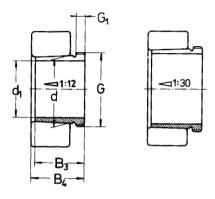

Locking washers and locking clamps are used for lock nuts securing. They are manufactured according to national standard

Dimen d ₁	d d	d ₂	B ₁	B ₂	B ₅	G	Designation sleeve	lock nut	lock washer	Weight
mm							_			kg
17	20 20 20	32 32 32	24 28 31	7 7 7		M20×1 M20×1 M20×1	H204 H304 H2304	KM4 KM4 KM4	MB4 MB4 MB4	0,041 0,045 0,049
20	25 25 25	38 38 38	26 29 35	8 8 8		M25×1,5 M25×1,5 M25×1,5	H205 H305 H2305	KM5 KM5 KM5	MB5 MB5 MB5	0,070 0,075 0,087
25	30 30 30	45 45 45	27 31 38	8 8 8		M30×1,5 M30×1,5 M30×1,5	H206 H306 H2306	KM6 KM6 KM6	MB6 MB6 MB6	0,099 0,109 0,126
30	35 35 35	52 52 52	29 35 43	9 9 9		M35×1,5 M35×1,5 M35×1,5	H207 H307 H2307	KM7 KM7 KM7	MB7 MB7 MB7	0,125 0,142 0,165
35	40 40 40	58 58 58	31 36 46	10 10 10		M40×1,5 M40×1,5 M40×1,5	H208 H308 H2308	KM8 KM8 KM8	MB8 MB8 MB8	0,174 0,189 0,224
40	45 45 45	65 65 65	33 39 50	11 11 11		M45×1,5 M45×1,5 M45×1,5	H209 H309 H2309	KM9 KM9 KM9	MB9 MB9 MB9	0,227 0,248 0,280
45	50 50 50	70 70 70	35 42 55	12 12 12		M50×1,5 M50×1,5 M50×1,5	H210 H310 H2310	KM10 KM10 KM10	MB10 MB10 MB10	0,274 0,303 0,362
50	55 55 55	75 75 75	37 45 59	12 12 12		M55×2 M55×2 M55×2	H211 H311 H2311	KM11 KM11 KM11	MB11 MB11 MB11	0,308 0,345 0,420
55	60 60 60	80 80 80	38 47 62	13 13 13		M60×2 M60×2 M60×2	H212 H312 H2312	KM12 KM12 KM12	MB12 MB12 MB12	0,346 0,394 0,481
60	65 65 65 70 70	85 85 85 92 92	40 50 65 41 52	14 14 14 14 14		M65×2 M65×2 M65×2 M70×2 M70×2	H213 H313 H2313 H214 H314	KM13 KM13 KM13 KM14 KM14	MB13 MB13 MB13 MB14 MB14	0,401 0,458 0,557 0,593 0,723
	70	92	68	14		M70×2	H2314	KM14	MB14	0,897
65	75 75 75	98 98 98	43 55 73	15 15 15		M75×2 M75×2 M75×2	H215 H315 H2315	KM15 KM15 KM15	MB15 MB15 MB15	0,707 0,831 1,05
70	80 80 80	105 105 105	46 59 78	17 17 17		M80×2 M80×2 M80×2	H216 H316 H2316	KM16 KM16 KM16	MB16 MB16 MB16	0,882 1,03 1,28

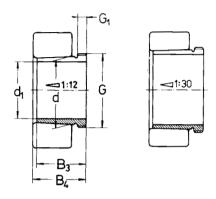


Dimen d ₁	sions d	d ₂	B ₁	82	85	G	Designation sleeve	lock nut	lock washer	Weight
mm							_		· · · · · · · · · · · · · · · · · · ·	kg
75	85 85 85	110 110 110	50 63 82	18 18 18		M85×2 M85×2 M85×2	H217 H317 H2317	KM17 KM17 KM17	MB17 MB17 MB17	1,02 1,18 1,45
80	90 90 90	120 120 120	52 65 86	18 18 18		M90×2 M90×2 M90×2	H218 H318 H2318	KM18 KM18 KM18	MB18 MB18 MB18	1,19 1,37 1,69
85	95 95 95	125 125 125	55 68 90	19 19 19		M95×2 M95×2 M95×2	H219 H319 H2319	KM19 KM19 KM19	MB19 MB19 MB19	1,37 1,56 1,92
90	100 100 100 100	130 130 130 130	58 71 76 97	20 20 20 20		M100×2 M100×2 M100×2 M100×2	H220 H320 H3120 H2320	KM20 KM20 KM20 KM20	MB20 MB20 MB20 MB20	1,49 1,69 1,80 2,15
100	110 110 110 110	145 145 145 145	63 77 81 105	21 21 21 21		M110×2 M110×2 M110×2 M110×2	H222 H322 H3122 H2322	KM22 KM22 KM22 KM22	MB22 MB22 MB22 MB22	1,93 2,18 2,25 2,74
110	120 120 120	145 155 155	72 88 112	22 22 22		M120×2 M120×2 M120×2	H3024 H3124 H2324	KML24 KM24 KM24	MBL24 MB24 MB24	1,93 2,64 3,19
115	130 130 130	155 165 165	80 92 121	23 23 23		M130×2 M130×2 M130×2	H3026 H3126 H2326	KML26 KM26 KM26	MBL26 MB26 MB26	2,85 3,66 4,60
125	140 140 140	165 180 180	82 97 131	24 24 24		M140×2 M140×2 M140×2	H3028 H3128 H2328	KML28 KM28 KM28	MBL28 MB28 MB28	3,16 4,34 5,55
135	150 150 150	180 195 195	87 111 139	26 26 26		M150×2 M150×2 M150×2	H3030 H3130 H2330	KML30 KM30 KM30	MBL30 MB30 MB30	3,89 5,52 6,63
140	160 160 160	190 210 210	93 119 147	27,5 28 28		M160×3 M160×3 M160×3	H3032 H3132 H2332	KML32 KM32 KM32	MBL32 MB32 MB32	5,21 7,67 9,14
150	170 170 170	200 220 220	101 122 154	28,5 29 29		M170×3 M170×3 M170×3	H3034 H3134 H2334	KML34 KM34 KM34	MBL34 MB34 MB34	5,99 8,38 10,2
160	180 180 180	210 230 230	109 131 161	29,5 30 30		M180×3 M180×3 M180×3	H3036 H3136 H2336	KML36 KM36 KM36	MBL36 MB36 MB36	6,83 9,50 11,3
170	190 190	220 240	112 141	30,5 31		M190×3 M190×3	H3038 H3138	KML38 KM38	MBL38 MB38	7, 4 5 10,8


Dimen d ₁	sions d	d ₂	B ₁	B ₂	B ₅	G	Designation sleeve	lock nut	lock washer	Weight
mm										kg
170	190	240	169	31		M190×3	H2338	KM38	MB38	12,6
180	200 200 200	240 250 250	120 150 176	31,5 32 32		M200×3 M200×3 M200×3	H3040 H3140 H2340	KML40 KM40 KM40	MBL40 MB40 MB40	9,19 12,1 13,9
200	220 220 220	260 280 280	128 161 186	30 36 36	41 44	Tr220×4 Tr220×4 Tr220×4	H3044 H3144 H2344	HM3044 HM3144 HM2344	M\$3044 MB44 MB44	10,3 14,7 16,7
220	240 240 240	290 300 300	133 172 199	34 38 38	46 46	Tr240×4 Tr240×4 Tr240×4	H3048 H3148 H2348H	HM3048 HM3148 HM3148H	MS3048 MB48 MB48	13,2 17,3 19,7
240	260 260 260	310 330 330	145 190 211	34 39 39	46	Tr260×4 Tr260×4 Tr260×4	H3052 H3152 H2352H	HM3052 HM3152 HM3152H	MS3052 MB52 MB52	15,3 22,0 24,2
260	280 280 280	330 350 350	152 195 224	38 41 41	50	Tr280×4 Tr280×4 Tr280×4	H3056 H3156 H2356H	HM3056 HM3156 HM3156	MS3056 MB56 MB56	17,7 24,5 27,8
280	300	360	168	42	54	Tr300×4	H3060	HM3060	MS3060	22,8
	300	380	208	40	53	Tr300×4	H3160H	HM3160H	MS3160	30,2
	300	380	240	40	53	Tr300×4	H3260H	HM3160	MS3160	34,1
300	320	380	171	42	55	Tr320×5	H3064H	HM3064H	MS3064	24,6
	320	400	226	42	56	Tr320×5	H3164H	HM3164	MS3164	34,9
	320	400	258	42	56	Tr320×5	H3264H	HM3264H	MS3264	39,3
320	340	400	187	45	58	Tr340×5	H3068H	HM3068H	MS3068	28,7
	340	440	254	55	72	Tr340×5	H3168H	HM3168H	MS3168	49,5
	340	440	288	55	72	Tr340×5	H3268H	HM3168	MS3168	51,5
340	360	420	188	45	58	Tr360×5	H3072H	HM3072H	MS3072	30,5
	360	460	259	58	75	Tr360×5	H3172H	HM3172H	MS3168	54,2
	360	460	299	58	75	Tr360×5	H3272H	HM3172	MS3172	60,5
360	380	450	193	48	62	Tr380×5	H3076H	HM3076H	MS3076	35,8
	380	490	264	60	77	Tr380×5	H3176H	HM3176H	MS3176	61,7
	380	490	310	60	77	Tr380×5	H3276H	HM3176	MS3176	69,5
380	400	470	210	52	66	Tr400×5	H3080H	HM3080H	MS3076	41,3
	400	520	272	62	82	Tr400×5	H3180H	HM3180H	MS3180	70,6
	400	520	328	62	81	Tr400×5	H3280H	HM3180	MS3180	96,0
400	420	490	212	52	66	Tr420×5	H3084H	HM3084H	MS3084	43,7
	420	540	304	70	90	Tr420×5	H3184H	HM3184H	MS3180	84,2
	420	540	352	70	89	Tr420×5	H3284H	HM3184	MS3184	112
410	440	520	228	60	77	Tr440×5	H3088H	HM3088H	MS3088	65,2
	440	560	307	70	90	Tr440×5	H3188H	HM3188H	MS3188	104


Dimen d ₁	sions d	d ₂	B ₁	B ₂	B ₅	G	Designation sleeve	lock nut	lock washer	Weight
mm							_			kg
410	440	560	361	70	88	Tr440×5	H3288H	HM3188	MS3188	135
430	460	540	234	60	77	Tr460×5	H3092H	HM3092H	MS3088	69,5
	460	580	326	75	95	Tr460×5	H3192H	HM3192H	MS3188	116
	460	580	382	75	94	Tr460×5	H3292H	HM3192	MS3192	154
450	480	560	237	60	77	Tr480×5	H3096H	HM3096H	MS3096	73,3
	480	620	335	75	95	Tr480×5	H3196H	HM3196H	MS3196	133
	480	620	397	75	94	Tr480×5	H3296H	HM3196	MS3196	187
470	500	580	208	68	83	Tr500×5	H39/500H	HM30/530	MS30/500	76,0
	500	580	247	68	85	Tr500×5	H30/500H	HM30/500H	MS3096	81,8
	500	630	356	80	100	Tr500×5	H31/500H	HM31/500H	MS31/500	143
	500	630	428	80	99	Tr500×5	H32/500H	HM31/500	MS31/500	191
500	530	630	216	68	89	Tr530×5	H39/530H	HM30/530	MS30/530	91,0
	530	630	265	68	90	Tr530×5	H30/530H	HM30/530	MS30/530	105
530	560	650	227	75	96	Tr560×6	H39/560H	HM30/560	MS30/560	101
	560	650	282	75	96	Tr560×6	H30/560H	HM30/560	MS30/560	117
560	600	700	239	75	96	Tr600X6	H39/600H	HM30/600	M\$30/600	128
	600	700	289	75	96	Tr600X6	H30/600H	HM30/600	M\$30/600	147
600	630	730	254	75	96	Tr630×6	H39/630H	HM30/630	MS30/630	121
	630	730	301	75	96	Tr360×6	H30/630H	HM30/630	MS30/630	139
630	670	780	264	80	101	Tr670×6	H39/670H	HM30/670	MS30/670	174
	670	780	324	80	101	Tr670×6	H30/670H	HM30/670	MS30/670	193
670	710	830	286	90	111	Tr710×7	H39/710H	HM30/710	MS30/710	217
	710	830	342	90	111	Tr710×7	H30/710H	HM30/710	MS30/710	221
710	750	870	291	90	111	Tr750×6	H39/750H	HM30/750	MS30/750	226
750	800	920	303	90	111	Tr800×7	H39/800H	HM30/800	MS30/800	294
	800	920	366	90	111	Tr800×7	H30/800H	HM30/800	MS30/800	311
800	850	980	308	90	115	Tr850×7	H39/850H	HM30/850	MS30/850	307
850	900	1 030	326	100	125	Tr900×7	H39/900H	HM30/900	MS30/900	374
	900	1 030	400	100	125	Tr900×7	H30/900H	HM30/900	MS30/900	387
900	950	1 080	344	100	125	Tr950×8	H39/950H	HM30/950	MS30/950	362

Dimen d ₁	n sions d	В3	B ₄	G	G ₁	Designation sleeve	lock nut	Weight	
mm								kg	
35	40 40	29 40	32 43	M45×1,5 M45×1,5	6 7	AH308 AH2308	KM9 KM9	0,090 0,128	
40	45 45	31 44	34 47	M50×1,5 M50×1,5	6 7	AH309 AH2309	KM10 KM10	0,109 0,164	
45	50 50	35 50	38 53	M55×2 M55×2	7 9	AH310 AH2310	KM11 KM11	0,137 0,209	
50	55 55	37 54	40 57	M60×2 M60×2	7 10	AH311 AH2311	KM12 KM12	0,161 0,253	
55	60 60	40 58	43 61	M65×2 M65×2	8 11	AH312 AH2312	KM13 KM13	0,189 0,297	
60	65 65	42 61	45 64	M75×2 M75×2	8 12	AH313 AH2313	KM15 KM15	0,253 0,395	
65	70 70	43 64	47 68	M80×2 M80×2	8 12	AH314 AH2314	KM16 KM16	0,280 0,466	
70	75 75	45 68	49 72	M85×2 M85×2	8 12	AH315 AH2315	KM17 KM17	0,313 0,534	
75	80 80	48 71	52 75	M90×2 M90×2	8 12	AH316 AH2316	KM18 KM18	0,365 0,597	
80	85 85	52 74	56 78	M95×2 M95×2	9 13	AH317 AH2317	KM19 KM19	0,429 0,670	
85	90 90 90	53 63 79	57 67 83	M100×2 M100×2 M100×2	9 10 14	AH318 AH3218 AH2318	KM20 KM20 KM20	0,461 0,570 0,779	
90	95 95 95	57 67 85	61 89	M105×2 M105×2 M105×2	10 11 16	AH319 AH3219 AH2319	KM21 KM21 KM21	0,532 0,655 0,886	
95	100 100 100 100	59 64 73 90	63 68 77 94	M110×2 M110×2 M110×2 M110×2	10 11 11 16	AH320 AH3120 AH3220 AH2320	KM22 KM22 KM22 KM22	0,582 0,650 0,767 0,998	
105	110 110 110 110 110	68 68 82 82 98	72 72 86 91 102	M120×2 M120×2 M125×2 M115×2 M125×2	11 11 11 13 16	AH3122 AH322 AH3222 AH24122 AH2322	KM24 KM24 KM25 KM23 KM25	0,760 0,663 1,04 0,730 1,35	
115	120 120 120	60 73 75	64 82 79	M130×2 M125×2 M130×2	13 13 12	AH3024 AH24024 AH3124	KM26 KM25 KM26	0,750 0,650 0,950	



Dimens d ₁	sions d	В3	B ₄	G	G ₁	Designation sleeve	lock nut	Weight
mm						_		kg
115	120	90 93	94	M135×2 M130×2	13	AH3224	KM27	1,30
	120 120	93 105	102 109	M130×2 M135×2	13 17	AH24124 AH2324	KM26 KM27	1,00 1,60
125	130	67	71	M140×2	14	AH3026	KM28	0,930
	130	78 83	82	M140×2	12	AH3126	KM28	1,08
	130	83	93	M135×2	14	AH24026	KM27	0,840
	130	94 98	104	M140×2	14	AH24126	KM28	1,11
	130	98	102	M145×2	15	AH3226	KM29	1,58
	130	115	119	M145×2	19	AH2326	KM29	1,97
135	140	68 83 83 99 104	73	M150×2	14	AH3028	KM30	1,01
	140	83	88	M150×2	14	AH3128	KM30	1.28
	140	83	93 109	M145×2	14	AH24028	KM29	0.910
	140	99	109	M150×2	14	AH24128	KM30	1,25
	140	104	109	M155×3	15	AH3228	KM31	1,84
	140	125	130	M155×3	20	AH2328	KM31	2,33
145	150	72 9 0	77	M160×3	15	AH3030	KM32	1,15
	150	90	101	M160×3 M155×3	15	AH24030	KM31	1,04
	150	96	101	M165×3	15	AH3130	KM33	1,79
	150	114	119	M165×3	17	AH3230	KM33	2,22
	150	115	126	M160×3	15	AH24130	KM32	1,56
	150	135	140	M165×3	24	AH2330	KM33	2,82
150	160	77	82	M170×3	16	AH3032	KM34	2,06
	160	95	106	M170×3	15	AH24032	KM34	2,33
	160	103	108	M180×3	16	AH3132	KM36	3,21
	160	124 124	130	M180×3	20	AH3232	KM36	4,08
	160	124	135	M170×3	15	AH24132	KM34	3,00
	160	140	146	M180×3	24	AH2332	KM36	4,72
160	170	85	90	M180×3	17	AH3034	KM36	2,43
	170	104	109	M190×3	16	AH3134	KM38	2,43 3,40
	170	106	117	M180×3	16	AH24034	KM36	2.80
	170 170	125 134	136	M180×3	16	AH24134	KM36	3.21
	170	134	140	M190×3	24	AH3234	KM38	4,80
	170	146	152	M190×3	24	AH2334	KM38	5,25
170	180	92	98	M190×3	17	AH3036	KM38	2,81
	180	105	110	M200×3	17	AH2236H	KM40	3,75
	180 180	116	122	M200×3	19	AH3136	KM40	4.22
	180	116	127	M190×3	16	AH24036	KM38	3.10
	180	134	145	M190×3	16	AH24136	KM38	3,68
	180	140	146	M200×3	24	AH3236	KM40	5,32
	180	154	160	M200×3	26	AH2336	KM40	5,83

Dimen d ₁	sions d	В3	B ₄	G	G ₁	Designation sleeve	lock nut	Weight
mm						_		kg
180	190	96	102	Tr205×4	18	AH3038	HML41T	3,32
	190	112	117	Tr210×4	18	AH2238	HM42T	4,25
	190	118	131	M200×3	18	AH24038	KM40	3,50
	190	125	131	Tr210×4	20	AH3138	HM42T	4,89
	190	145	152	Tr210×4	25	AH3238	HM42T	5,90
	190	146	159	M200×3	18	AH24138	KM40	4,28
	190	160	167	Tr210×4	26	AH2338	HM42T	6,36
190	200	102	108	Tr215×4	19	AH3040	HML43T	3,80
	200	118	123	Tr220×4	19	AH2240	HM44T	4,68
	200	127	140	Tr210×4	18	AH24040	HM42T	3,93
	200	134	140	Tr220×4	21	AH3140	HM44T	5,49
	200	153	160	Tr220×4	25	AH3240	HM44T	6,68
	200	158	171	Tr210×4	18	AH24140	HM42T	5,10
	200	170	177	Tr220×4	30	AH2340	HM44T	7,54
200	220 220 220 220 220 220	111 138 145 170 181	117 152 151 184 189	Tr235×4 Tr230×4 Tr240×4 Tr230×4 Tr240×4	20 20 23 20 30	AH3044 AH24044 AH3144 AH24144 AH2344	HML47T HM46T HM48T HM46T HM48T	7,40 8,25 10,4 10,2 13,5
	220	181	189	Tr240×4	30	AH3244H	HM48T	13,5
220	240	116	123	Tr260×4	21	AH3048	HML52T	8,75
	240	138	153	Tr250×4	20	AH24048	HM50T	9,00
	240	144	150	Tr260×4	21	AH2248	HM52T	11,1
	240	154	161	Tr260×4	25	AH3148	HM52T	12,0
	240	180	195	Tr260×4	20	AH24148	HM50T	12,5
	240	189	197	Tr260×4	30	AH2348	HM52T	15,5
	240	189	197	Tr260×4	30	AH3248H	HM52T	14,0
240	260	128	135	Tr280×4	23	AH3052	HML56T	10,7
	260	155	179	Tr290×4	26	AH2252H	HM58T	12,5
	260	162	178	Tr270×4	22	AH24052H	HM54T	10,5
	260	172	179	Tr290×4	26	AH3152H	HM58T	16,0
	260	202	218	Tr280×4	22	AH24152H	HM56T	14,0
	260	205	213	Tr260×4	30	AH2352	HM58T	17,5
	260	205	213	Tr290×4	30	AH3252H	HM58T	17,5
260	280	131	139	Tr300×4	24	AH3056H	HML60T	11,0
	280	162	179	Tr290×4	22	AH24056H	HM58T	11,5
	280	175	183	Tr310×5	28	AH3156H	HM62T	15,5
	280	202	219	Tr300×4	22	AH24156H	HM60T	15,0
	280	212	220	Tr310×5	30	AH2356	HM62T	19,5
	280	212	220	Tr310×5	30	AH3256H	HM62T	19,5

Dimen d ₁	sions d	B ₁	B ₂	G	G ₁	Designation sleeve	lock nut	Weight
mm						_		kg
280	300	145	153	Tr320×5	26	AH3060H	HML64T	13,0
	300	184	202	Tr310×5	24	AH24060H	HM62T	14,0
	300	192	200	Tr330×5	30	AH3160H	HM66T	19,0
	300	224	242	Tr320×5	24	AH24160H	HM64T	18,5
	300	228	236	Tr330×5	34	AH3260H	HM66T	23,5
300	320	149	157	Tr345×5	27	AH3064H	HML69T	14,5
	320	184	202	Tr330×5	24	AH24064H	HM66T	15,0
	320	209	217	Tr350×5	31	AH3164H	HM70T	22,5
	320	242	260	Tr340×5	24	AH24164H	HM68T	20,5
	320	246	254	Tr350×5	36	AH3264H	HM70T	27,5
320	340	162	171	Tr365×5	28	AH3068H	HML73T	17,5
	340	206	225	Tr360×5	26	AH24068H	HM72T	18,0
	340	225	234	Tr370×5	33	AH3168H	HM74T	26,5
	340	264	273	Tr370×5	38	AH3268H	HM74T	32,0
	340	269	288	Tr360×5	26	AH24168H	HM72T	25,5
340	360	167	176	Tr385×5	30	AH3072H	HML77T	19,0
	360	206	226	Tr380×5	26	AH24072H	HM76T	20,0
	360	229	238	Tr400×5	35	AH3172H	HM80T	30,0
	360	269	289	Tr380×5	26	AH24172H	HM76T	26,0
	360	274	283	Tr400×5	40	AH3272H	HM80T	33,0
360	380	170	180	Tr410×5	31	AH3076H	HML82T	23,5
	380	208	228	Tr400×5	28	AH24076H	HM80T	23,5
	380	232	242	Tr420×5	36	AH3176H	HM84T	36,0
	380	271	291	Tr400×5	28	AH24176H	HM80T	31,0
	380	284	294	Tr420×5	42	A3276H	HM84T	45,5
380	400	183	193	Tr430×5	33	AH3080H	HML86T	27,0
	400	228	248	Tr420×5	28	AH24080H	HM84T	27,0
	400	240	250	Tr440×5	38	AH3180H	HM88T	39,5
	400	278	298	Tr420×5	28	AH24180H	HM84T	35,0
	400	302	312	Tr440×5	44	AH3280H	HM88T	51,5
400	420	186	196	Tr450×5	34	AH3084H	HML90T	29,0
	420	230	252	Tr440×5	30	AH24084H	HM88T	29,0
	420	266	276	Tr460×5	40	AH3184H	HM92T	46,0
	420	310	332	Tr440×5	30	AH24184H	HM88T	39,0
	420	321	331	Tr460×5	46	AH3284H	HM92T	77,0
420	440	194	205	Tr470×5	35	AH3088H	HML94T	36,0
	440	242	264	Tr460×5	30	AH24088H	HM92T	32,0
	440	270	281	Tr480×5	42	AH3188H	HM96T	69,0
	440	310	332	Tr460×5	30	AH24188H	HM92T	42,5
	440	330	341	Tr480×5	48	AH3288H	HM96T	81,0
440	460	202	213	Tr490×5	37	AH3092H	HML98T	40,0
	460	285	296	Tr510×6	43	AH3192H	HM102T	70,0
	460	332	355	Tr480×5	32	AH24192H	HM96T	50,0
	460	349	360	Tr510×6	50	AH3292H	HM102T	97,0

Dimen d ₁	sions d	B ₁	B ₂	G	G ₁	Designation sleeve	lock nut	Weight	
mm								kg	
460	480 480 480 480	205 295 340 364	217 307 363 376	Tr520×6 Tr530×6 Tr500×5 Tr530×6	38 45 32 52	AH3096H AH3196H AH24196H AH3296H	HML104T HM106T HM100T HM106T	44,0 82,0 51,5 114	
480	500 500 500 500 500	163 209 313 360 393	172 221 325 383 405	Tr520×6 Tr540×6 Tr550×6 Tr530×6 Tr550×6	32 40 47 35 54	AH39/500H AH30/500H AH31/500H AH241/500H AH32/500H	HMLL104T HML108T HM110T HM106T HM110T	31,0 47,0 90,0 57,0 120	
500	530 530 530	175 230 370	185 242 394	Tr550×6 Tr560×6 Tr550×6	37 45 35	AH39/530H AH30/530H AH241/530H	HMLL110T HML112T HM110T	47,0 62,0 86,0	
530	560 560 560	180 240 393	190 252 417	Tr580×6 Tr590×6 T r580 ×6	37 45 38	AH39/560H AH30/560H AH241/560H	HMLL116T HML118T HM116T	55,0 76,0 97,0	
560	600	413	439	Tr630×6	38	AH241/600H	HM126T	120	
570	600 600	192 245	202 259	Tr625×6 Tr630×6	38 45	AH39/600H AH30/600H	HMLL125T HML126T	57,0 77,0	
600	630 630 630	210 258 440	222 272 466	Tr655×6 Tr670×6 Tr650×6	40 46 40	AH39/630H AH30/630H AH241/630H	H M LL131T HML134T HM130T	64,0 91,0 130	
630	670 670	216 280	228 294	Tr695×6 Tr710×7	41 50	AH39/670H AH30/670H	HMLL139T HML142T	107 126	
670	710 710	228 286	240 302	Tr740×7 Tr750×7	43 50	AH39/710H AH30/710H	HMLL148T HML150T	123 133	
710	750	234	246	Tr780×7	44	AH39/750H	HMLL156T	128	
750	800 800	245 308	257 326	Tr830×7 Tr850×7	45 50	AH39/800H AH30/800H	HMLL166T HML170T	183 211	
800	850	258	270	Tr880×7	50	AH39/850H	HMLL176T	184	
850	900 900	265 335	277 355	Tr930×8 Tr950×8	51 55	AH39/900H AH30/900H	HMLL186T H M L190T	226 248	
900	950	282	297	Tr980×8	50	AH39/950H	HMLL196T	227	

Rolling elements

The rolling elements used for bearings which can be separately supplied are: balls, cylindrical rollers and needle rollers.

Balls

Balls of bearings steels are produced to the hardness of 60 - 66 HRC and in various grades. The values of the tolerances and form deviations are in accordance with ISO 3290 and national standard. Within each grade,

the balls are sorted into ball gauges, depending on diameter. Ball lots result after manufacturing, which belong to one of the gauge. The gauge is marked on the corresponding lot package. Ball designation consists of a prefix which represents the grade, followed by the basic designation. This one consists of the letters "BR", followed

by the value of the nominal ball diameter D_w and by the suffix which represents the value of the gauge, preceded by letter "P" for nought or positive values and letter "M" for negative values.

Example: 20BR 12.7 P2

- nominal diameter 12,7
- ball grade 20
- gauge +2 µm

In this case, the gauge interval is of $2 \mu m$ (according to table 1) and lot mean diameter D_{wmL} will be 12,701 - 12,703 mm).

At request, special balls of other materials than bearing steels can be manufactured (e.g. stainless steels, drilling bit steels). In this case, the letters in the basic designation will be "BS".

Tolerances of hardened steel balls

Table 1

Ball grade	Ball diameter D _w		Tolerance	8		Gauge interval	Gauge mean values
	over	up to	V _{Dws}	t _{Dw}	VDwL	1	8
	mm		μm				
3		12,7	0,08	0,08	0,13	0,5	-50,5; 0; +0,5+5
5	6	6 13,5	0,1 0,13	0,1 0,13	0,25 0,25	1,0 1,0	-61,0; 0; +1,0,6 -61,0; 0; +1,0,6
10		13,5	0,2	0,2	0,5	1,0	-91,0; 0; +1,0+9
16		25,4	0,35	0,35	0,5	2,0	-102,0; 0; +2,0+10
20		25,4	0,5	0,5	0,5	2,0	-102,0; 0; +2,0,+10
28		38,1	0,7	0,7	1,4	2,0	-122,0; 0; +2,0+12
40	25,4 50,8	50,8 76,2	1 2	1 2	2 2	4,0 4,0	-164,0; 0; +4,0+16 -164,0; 0; +4,0+16
100	76,2 127	12,7 127 152,4	2 2,5 3,5	2 2,5 3,5	4 5 5	10,0 10,0 10,0	-4010,0; 0; +10,0+40 -4010,0; 0; +10,0+40 -4010,0; 0; +10,0+40
200	175	250	5	5	10	15,0	-6015,0; 0; +15,0+60

Designations

₽w Dwa - nominal ball diameter

- single diameter of a ball: the distance between two parallel planes in contact with the

Dwm

- mean ball diameter: arithmetical mean of the largest and smallest single ball diameters

 D_{wmL}

- mean diameter of ball lot; arithmetical mean of mean diameters Dwm of the smallest and largest ball in the lot.

VDws

 single ball diameter variation: difference between the largest and smallest single diameters Dws of one ball

VDWL

- lot diameter variation: difference between the mean diameter Dwm of the largest ball and that of the smallest ball in the lot.

tow

L

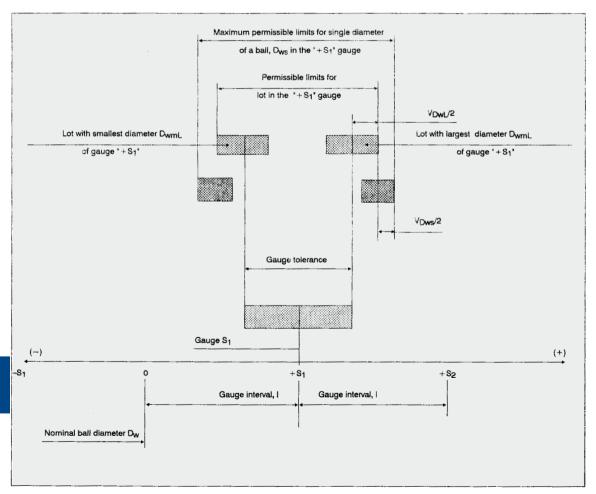
- deviation from spherical form.

- ball gauge interval: difference between the

mean diameters of the largest and the smallest ball of the gauge - the value is pre-established for each ball grade.

- lot: a definite quantity of balls manufactured

under uniform conditions and considered as an entity which is to be in the same time qualitatively take over. The balls are of the same material, have the same nominal diameter, belong to the same grade and have been manufactured under uniform technological and organizational conditions).


S

gauge: the amount in a series of values of gauges pre- established for each ball grade by which lot mean diameter differ from the nominal ball diameter

The relationships between the deviations of the lot and the gauge are shown in the figure below.

As a lot is allocated to a gauge based on the mean ball diameter DwmL, the two gauge limits may be further exceeded by V_{DwL}/2. In addition, for a single value the limits may be exceeded by V_{Dws}/2.

The diameter variation of the balls in the same package do not always correspond to the variation of the ball diameter V_{DwL} prescribed for a lot in table 1.

Steel balls

Diameter D _w		Weight /1 000 pcs.	Designation	Diameter D _w		Weight /1 000 pcs.	Designation
nm	inch	kg	_	mm	inch	kg	_
1		0,004	BR1	15		73,9	BR15
1,5		0,014	BR1,5				
1,588	1/16	0,016	3R1,588	15,081	19/32	14,1	SR15,081
3		0,033	BR2	15,875	5/8	16,5	3R15,875
2,381	3/32	0,055	5R2,381	15,875	5/8	6,5	3515,875
				16		:6,8	3R16
2,5 2,5		0,064	3R2,5	16,669	21/32	19,1	BR16,669
2,5		0,064	BS2,5				
3		0.111	3R3	17		20,2	3R17
3		0,111	BS3	17.462	11/16	20,2 21,3	3R17,462
3.175	1/8	0,132	BR3.175	17,462	11/16	21,9	BS17,462
	-, -	-,		18		24	3R18
3.175	7/8	0,132	3S3 ,175	18,256	23/32	25	3R18,256
3,5		0,177	3R3,5				,
3,969	5/32	0,257	BR3,969	19		8.2	3R19
4,003	0,00	0,263	3R4	19.05	3/4	28.4	3R19.05
ā		0,263	554	19,05	3/4	28.4	BS19,05
~		0,200		19,844	25/32	32,4	BR19,844
4,5		0,374	BR4,5	20	20,02	32.9	BR20
4.762	3/16	0.446	3R4.762	~0		JE.0	
5 5	3/10	0,514	3R5	20,638	13/16	36,2	3R20,638
5 5		0,679	3R5,5	20,636	3/10	38,1	3R20,036 3R21
5,5 5,556	7/20			21,431	27/32	40	
0.000	7/32	0,702	BR5,556		21/32		BR21,431 BR22
c		0.000	2De	22	7/0	43,8	3R22,225
6 8,35 6,5 7	110	0,882	3R6	22,225	7/8	45,2	9RZZ,ZZ3
0,43	1/4	1,03	BR6,35	00.005	7/0	46.0	2000 000
5,5		1,13	BR6,5	22,225	7/8	45,2	BS22,225
	0.000	1,41	BR7	23	4540	49,6	BR23
7,144	9/32	1,5	BR7,144	23,812	15/16	55,5	3R23,812
				24		56,8	BB24
7,5		1,74	BR7,5	25		64,2	BR 25
7,938	5/16	2,06	BR7,938		40	27.4	2022
7,938	5/16	2,06	BS7,938	25,4	4"	67,4 72,3	BR25,4
8		2,1	BR8	26		72,3	BR26
8,5		2,52	BR8,5	26,988	1"1/16	30,8 90,2	BR26,988
				28		90,2	BR28
8,731	11/32	2,66	BR8,731	28,575	1*1/8	95,5	BR28,575
9		3	BR9	•			SDGG
9,525	3/8	3,55	BR9,525	30	48040	111	BR30
10	/	4,11	BR10	30,162	1"3/16	113	BR30,162
10,319	13/32	4,43	BR10,319	31,75	1"1/4	132	BR31,750
				32		135	BR32
11		5,47	BR11	33		146	BR33
11,112	7/16	5,64	BR11,112				
11,112	7/16	5,64	BS11,112	33,338	1"5/16	152	BR33,338
11,5		6,25	BR11,5	34		162	BR34
11,906	15/32	6,93	BR11,906	34,925	1"3/8	175	BR34,925
-		-		35		177	BR35
12		7,1	BR12	36		192	BR36
12,5		8,03	BR12,5				
12,5		8,03	BS12,5	36,512	1"7/16	200	BR36,512
12,7	1/2	8,42	BR12,7	38		225	BR38
13	• '	9,03	BR13	38,1	1"1/2	227	BR38,1
		4,55		39,688	1*9/16	257	BR39,688
13,494	17/32	10,1	BR13,494	40	/	263	BR40
14	,	11,3	BR14	••			
14,288	9/16	12	BR14,288	41,275	1*5/8	290	BR41,275
14,288	9/16	12	BS14,288	,	, -		,

Steel balls

Diameter D _w	-	Weight /piece	Designation
mm	inch	kg	_
12,862 14,45 16,038 17,625 19,212	1*11/16 1*3/4 1*13/16 1*7/8 1*15/16	0,324 0,361 0,403 0,446 0,490	BR42,862 BR44,45 BR46,038 BR47,625 BR49,212
60 60,8 53,975 55 57,15	2" 2"1/8 2"1/4	0,514 0,539 0,646 0,679 0,769	BR50 BR50,8 BR53,975 BR55 BR57,15
60 60,325 63,5 65 66,675	2"3/8 2"1/2 2"5/8	0,882 0,902 1,03 1,13 1,22	BR60,325 BR63,5 BR65 BR66,675
59,85 73,025 75 76,2	2"3/4 2"7/8 3"	1,40 1,60 1,74 1,82 2,10	BR69,850 BR73,025 BR75 BR76,2 BR80
2,55 5 8,9 0 5	3"1/4 3"1/2	2,31 2,52 2,89 3,00 3,52	BR82,55 BR85 BR88,9 BR90 BR95
95,25 100 110 120 127	3"3/4 5"	3,55 4,11 5,47 7,10 8,42	8R95,25 BR100 BR110 BR120 BR127
130 140 150		9,02 11,2 13,9	BR130 BR140 BR150

www.urbbearings.ro